On recognition by spectrum of symmetric groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 111-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a group is the set of its element orders. A finite group $G$ is said to be recognizable by spectrum if every finite group with the same spectrum is isomorphic to $G$. We prove that if $n\in\{15,16,18,21,27\}$ then symmetric groups $Sym_n$ are recognizable by spectrum.
Keywords: finite group, symmetric group, spectrum of a group, recognizability by spectrum.
Mots-clés : simple group
@article{SEMR_2016_13_a2,
     author = {I. B. Gorshkov and A. N. Grishkov},
     title = {On recognition by spectrum of symmetric groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {111--121},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a2/}
}
TY  - JOUR
AU  - I. B. Gorshkov
AU  - A. N. Grishkov
TI  - On recognition by spectrum of symmetric groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 111
EP  - 121
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a2/
LA  - en
ID  - SEMR_2016_13_a2
ER  - 
%0 Journal Article
%A I. B. Gorshkov
%A A. N. Grishkov
%T On recognition by spectrum of symmetric groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 111-121
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a2/
%G en
%F SEMR_2016_13_a2
I. B. Gorshkov; A. N. Grishkov. On recognition by spectrum of symmetric groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 111-121. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a2/

[1] R. Brandl, W. Shi, “Finite groups whose element orders are consecutive integers”, J. Algebra, 143:2 (1991), 388–400 | DOI | MR | Zbl

[2] C. E. Praeger, W. Shi, “A characterization of some alternating and symmetric groups”, Comm. Algebra, 22:5 (1994), 1507–1530 | DOI | MR | Zbl

[3] V. D. Mazurov, “Characterizations of finite groups by sets of orders of their elements”, Algebra and Logic, 36:1 (1997), 23–32 | DOI | MR | Zbl

[4] M. R. Darafsheh, A. R. Modhaddamfar, “A characterization of some finite groups by their element orders”, Algebra Colloq., 7:4 (2000), 467–476 | MR | Zbl

[5] A. V. Zavarnitsine, “Recognition by the set of element orders of symmetric groups of degree $r$ and $r+1$ for prime $r$”, Siberian Math. J., 43:5 (2002), 808–811 | DOI | MR | Zbl

[6] I. B. Gorshkov, “Recognizability of symmetric groups by spectrum”, Algebra and Logic, 53:6 (2015), 450–457 | DOI | MR | Zbl

[7] A. V. Zavarnitsine, “Recognition of alternating groups of degrees $r+1$ and $r+2$ for prime $r$ and the group of degree 16 by their element orders sets”, Algebra and Logic, 39:6 (2000), 370–377 | DOI | MR | Zbl

[8] D. Gorenstein, Finite groups, Harper and Row, New York, 1968 | MR | Zbl

[9] A. V. Vasil'ev, “On connection between the structure of a finite group and the properties of its prime graph”, Siberian Math. J., 46:3 (2005), 396–404 | DOI | MR | Zbl

[10] A. V. Vasil'ev, “On finite groups isospectral to simple classical groups”, J. Algebra, 423 (2015), 318–374 | DOI | MR | Zbl

[11] I. A. Vacula, “On the structure of finite groups isospectral to an alternating group”, Proceedings of the Steklov Institute of Mathematics, 272, 2011, 271–286 | DOI

[12] V. D. Mazurov, “The set of orders of elements in a finite group”, Algebra and Logic, 33:1 (1994), 49–55 | DOI | MR | Zbl

[13] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian electronic mathematical reports, 6 (2009), 1–12 | MR | Zbl

[14] GAP — Groups, algorithms, and programming. Version 4.4, , The GAP Group, 2004 http://www.gap-system.org

[15] A. S. Kleshchev, A. A. Premet, “On second degree cohomology of symmetric and alternating groups”, Comm. Algebra, 21:2 (1993), 583–600 | DOI | MR | Zbl

[16] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl