On solvability of equations with endomorphisms in nilpotent groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 716-725

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the conjugacy, twisted conjugacy and bi-twisted conjugacy problems, and the corresponding search problems, are decidable for the class $\mathbf{N}_{fg} $ of all finitely generated nilpotent groups. Also we give a finite description of the equalizer of any pair of endomorphisms of arbitrary group in the class $\mathbf{N}_{fg}$.
Keywords: finitely generated group, (twisted, bi-twisted) conjugacy problem, search problems, fix-point and equalizer problems, algorithm, complexity.
@article{SEMR_2016_13_a19,
     author = {V. A. Roman'kov},
     title = {On solvability of equations with endomorphisms in nilpotent groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {716--725},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a19/}
}
TY  - JOUR
AU  - V. A. Roman'kov
TI  - On solvability of equations with endomorphisms in nilpotent groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 716
EP  - 725
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a19/
LA  - ru
ID  - SEMR_2016_13_a19
ER  - 
%0 Journal Article
%A V. A. Roman'kov
%T On solvability of equations with endomorphisms in nilpotent groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 716-725
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a19/
%G ru
%F SEMR_2016_13_a19
V. A. Roman'kov. On solvability of equations with endomorphisms in nilpotent groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 716-725. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a19/