Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a19, author = {V. A. Roman'kov}, title = {On solvability of equations with endomorphisms in nilpotent groups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {716--725}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a19/} }
V. A. Roman'kov. On solvability of equations with endomorphisms in nilpotent groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 716-725. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a19/
[1] P. Hall, Edmonton notes on nilpotent groups, Queen Mary College Math. Notes. Math. Dept., Queen Mary College, London, 1969 | MR
[2] G. Baumslag, Lectures on nilpotent groups, CBMS Regional Conference Ser., 2, Amer. Math. Soc., Providence R. I., 1969
[3] H. Neumann, Varieties of groups, Springer, New York, 1967 | MR | Zbl
[4] M. I. Kargapolov, Yu. I. Merzlyakov, Foundations of Group Theory, Springer, New York, 1979 | Zbl
[5] J. C. Lennox, D. J. S. Robinson, The Theory of Infinite Soluble Groups, Oxford math. monographs, Clarendon Press, Oxford, 2004 | MR | Zbl
[6] A. Myasnikov, V. Shpilrain, A. Ushakov, Group-based Cryptography, Advanced Courses in Math., CRM, Barselona; Birkhauser, Basel–Boston–Berlin, 2008 | MR | Zbl
[7] A. Myasnikov, V. Shpilrain, A. Ushakov, Non-commutative Cryptography and Complexity of Group Theoretic Problems, Mathematical Surveys and Monographs, 177, AMS, Providence, Rhode Island, 2011 | DOI | MR | Zbl
[8] V. A. Roman'kov, Algebraic cryptography, OmSU, Omsk, 2013
[9] V. Roman'kov, “The twisted conjugacy problem for endomorphisms of polycyclic groups”, J. Group Theory, 13 (2010), 355–364 | MR | Zbl
[10] M. I. Kargapolov, V. N. Remeslennikov, N. S. Romanovskij, V. A. Roman'kov, V. A. Churkin, “Algorithmic problems for $\sigma$-power groups”, Algebra and Logic, 8 (1969), 364–373 | DOI | MR
[11] V. N. Remeslennikov, V. A. Roman'kov, “Model-theoretic and algorithmic questions of group theory”, Journal of Soviet Math., 31 (1985), 2887–2939 | DOI | Zbl
[12] V. A. Roman'kov, “Equations over groups”, Groups Complexity Cryptology, 4 (2012), 191–239 | MR | Zbl
[13] N. Blackburn, “Conjugacy in nilpotent groups”, Proc. Amer. Math. Soc., 16 (1965), 143–148 | DOI | MR | Zbl
[14] V. A. Roman'kov, “Unsolvability of the endomorphism reducibility problem in free nilpotent groups and in free rings”, Algebra and Logic, 16 (1977), 457–471 | MR | Zbl
[15] V. A. Roman'kov, “Diophantine questions in the class of finitely generated nilpotent groups”, J. Group Theory, 19 (2016), 497–514 | MR | Zbl
[16] G. Baumslag, A. Myasnikov, V. Shpilrain, “Open problems in combinatorial group theory”, Contemporary Math., 296, 2002, 1–38 ; Open Problems, extended version: http://grouptheory.info | DOI | MR | Zbl
[17] B. L. van der Waerden, Algebra I, Springer, Berlin, 1966 | Zbl
[18] F. Lazebnik, “On systems of linear Diophantine equations”, Math. Magazine, 69 (1996), 261–266 | DOI | MR | Zbl
[19] R. Kannan, A. Bachem, “Polynomial time algorithms to compute Hermite and Smith normal forms of an integer matrix”, SIAM J. Computing, 8 (1979), 499–507 | DOI | MR | Zbl
[20] T.-W. J. Chou, G. E. Collins, “Algorithms for the solution of systems of linear Diophantine equations”, SIAM J. Computing, 11 (1982), 687–708 | DOI | MR | Zbl
[21] C. C. Sims, Computations with Finitely Presented Groups, Encyclopedia of Mathematics and its Applications, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl