Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a18, author = {L. L. Maksimova and V. F. Yun}, title = {Calculi over minimal logic and nonembeddability of algebras}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {704--715}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a18/} }
TY - JOUR AU - L. L. Maksimova AU - V. F. Yun TI - Calculi over minimal logic and nonembeddability of algebras JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 704 EP - 715 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a18/ LA - ru ID - SEMR_2016_13_a18 ER -
L. L. Maksimova; V. F. Yun. Calculi over minimal logic and nonembeddability of algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 704-715. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a18/
[1] I. Johansson, “Der Minimalkalkül, ein reduzierter intuitionistischer {F3}ormalismus”, Compositio Mathematica, 4 (1937), 119–136 | MR
[2] L. L. Maksimova, V. F. Yun, “Strong decidability and strong recognizability”, Algebra and Logic (to appear)
[3] L. L. Maksimova, V. F. Yun, “Recognizable logics”, Algebra and Logic, 54:2 (2015), 252–274 | DOI | MR | Zbl
[4] L. L. Maksimova, “Implicit Definability and Positive Logics”, Algebra and Logic, 42:1 (2003), 37–53 | DOI | MR | Zbl
[5] W. Rautenberg, Klassische und nichtklassiche Aussagenlogik, Vieweg Verlag, Wiesbaden, 1979 | MR | Zbl
[6] S. Odintsov, Constructive negations and paraconsistency, Trends in Logic, 26, Springer, Dordrecht, 2008 | MR | Zbl
[7] A. I. Mal'tsev, Algebraic systems, Nauka, M., 1970 (In Russian) | MR | Zbl
[8] Nauka, M., 1972 | MR | Zbl
[9] I. Nishimura, “On formulas of one variable in intuitionistic propositional calculus”, Journal of Symbolic Logic, 25 (1960), 327–331 | DOI | MR | Zbl
[10] A. Chagrov, M. Zakharyaschev, Modal Logic, Clarendon Press, Oxford, 1997 | MR | Zbl
[11] D. M. Gabbay, L. Maksimova, Interpolation and Definability: Modal and Intuitionistic Logics, Clarendon Press, Oxford, 2005 | MR | Zbl