Calculi over minimal logic and nonembeddability of algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 704-715.

Voir la notice de l'article provenant de la source Math-Net.Ru

Algebraic semantics of the minimal logic $\mathrm{J}$ is constructed by using Johansson algebras ($\mathrm{J}$-algebras). In this paper the description of Heyting algebras in terms of nonembeddability of $\mathrm{J}$-algebras was found. As a corollary the characterization of superintuitionistic, wellcomposed and some other calculi in the class of various calculi over $\mathrm{J}$ was found. The central role is played by a special $\mathrm{J}$-algebra $M_{0,\omega}$, constructed and described in this paper.
Keywords: Minimal logic, superintuitionistic logic
Mots-clés : Johansson algebra, Heyting algebra, calculus.
@article{SEMR_2016_13_a18,
     author = {L. L. Maksimova and V. F. Yun},
     title = {Calculi over minimal logic and nonembeddability of algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {704--715},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a18/}
}
TY  - JOUR
AU  - L. L. Maksimova
AU  - V. F. Yun
TI  - Calculi over minimal logic and nonembeddability of algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 704
EP  - 715
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a18/
LA  - ru
ID  - SEMR_2016_13_a18
ER  - 
%0 Journal Article
%A L. L. Maksimova
%A V. F. Yun
%T Calculi over minimal logic and nonembeddability of algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 704-715
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a18/
%G ru
%F SEMR_2016_13_a18
L. L. Maksimova; V. F. Yun. Calculi over minimal logic and nonembeddability of algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 704-715. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a18/

[1] I. Johansson, “Der Minimalkalkül, ein reduzierter intuitionistischer {F3}ormalismus”, Compositio Mathematica, 4 (1937), 119–136 | MR

[2] L. L. Maksimova, V. F. Yun, “Strong decidability and strong recognizability”, Algebra and Logic (to appear)

[3] L. L. Maksimova, V. F. Yun, “Recognizable logics”, Algebra and Logic, 54:2 (2015), 252–274 | DOI | MR | Zbl

[4] L. L. Maksimova, “Implicit Definability and Positive Logics”, Algebra and Logic, 42:1 (2003), 37–53 | DOI | MR | Zbl

[5] W. Rautenberg, Klassische und nichtklassiche Aussagenlogik, Vieweg Verlag, Wiesbaden, 1979 | MR | Zbl

[6] S. Odintsov, Constructive negations and paraconsistency, Trends in Logic, 26, Springer, Dordrecht, 2008 | MR | Zbl

[7] A. I. Mal'tsev, Algebraic systems, Nauka, M., 1970 (In Russian) | MR | Zbl

[8] Nauka, M., 1972 | MR | Zbl

[9] I. Nishimura, “On formulas of one variable in intuitionistic propositional calculus”, Journal of Symbolic Logic, 25 (1960), 327–331 | DOI | MR | Zbl

[10] A. Chagrov, M. Zakharyaschev, Modal Logic, Clarendon Press, Oxford, 1997 | MR | Zbl

[11] D. M. Gabbay, L. Maksimova, Interpolation and Definability: Modal and Intuitionistic Logics, Clarendon Press, Oxford, 2005 | MR | Zbl