Embeddings of differential groupoids into modules over commutative rings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 599-606

Voir la notice de l'article provenant de la source Math-Net.Ru

As is well known, subreducts of modules over commutative rings in a given variety form a quasivariety. Stanovský proved that a differential mode is a subreduct of a module over a commutative ring if and only if it is abelian. In the present article, we consider a minimal variety of differential groupoids with nonzero multiplication and show that its abelian algebras form the least subquasivariety with nonzero multiplication.
Keywords: differential groupoid, module over a commutative ring, quasivariety.
Mots-clés : term conditions
@article{SEMR_2016_13_a16,
     author = {A. V. Kravchenko},
     title = {Embeddings of differential groupoids into modules over commutative rings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {599--606},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a16/}
}
TY  - JOUR
AU  - A. V. Kravchenko
TI  - Embeddings of differential groupoids into modules over commutative rings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 599
EP  - 606
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a16/
LA  - en
ID  - SEMR_2016_13_a16
ER  - 
%0 Journal Article
%A A. V. Kravchenko
%T Embeddings of differential groupoids into modules over commutative rings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 599-606
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a16/
%G en
%F SEMR_2016_13_a16
A. V. Kravchenko. Embeddings of differential groupoids into modules over commutative rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 599-606. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a16/