Embeddings of differential groupoids into modules over commutative rings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 599-606.

Voir la notice de l'article provenant de la source Math-Net.Ru

As is well known, subreducts of modules over commutative rings in a given variety form a quasivariety. Stanovský proved that a differential mode is a subreduct of a module over a commutative ring if and only if it is abelian. In the present article, we consider a minimal variety of differential groupoids with nonzero multiplication and show that its abelian algebras form the least subquasivariety with nonzero multiplication.
Keywords: differential groupoid, module over a commutative ring, quasivariety.
Mots-clés : term conditions
@article{SEMR_2016_13_a16,
     author = {A. V. Kravchenko},
     title = {Embeddings of differential groupoids into modules over commutative rings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {599--606},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a16/}
}
TY  - JOUR
AU  - A. V. Kravchenko
TI  - Embeddings of differential groupoids into modules over commutative rings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 599
EP  - 606
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a16/
LA  - en
ID  - SEMR_2016_13_a16
ER  - 
%0 Journal Article
%A A. V. Kravchenko
%T Embeddings of differential groupoids into modules over commutative rings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 599-606
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a16/
%G en
%F SEMR_2016_13_a16
A. V. Kravchenko. Embeddings of differential groupoids into modules over commutative rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 599-606. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a16/

[1] R. Freese, R. McKenzie, Commutator Theory for Congruence Modular Varieties, Cambridge University Press, Cambridge, 1987 | MR | Zbl

[2] V. A. Gorbunov, Algebraic Theory of Quasivarieties, Consultants Bureau, New York, 1998 | MR | Zbl

[3] J. Ježek, T. Kepka, Medial Groupoids, Academia Nakladatelství Československé Akademie Ved, Praha, 1983 | MR | Zbl

[4] A. V. Kravchenko, “On the lattice of quasivarieties of differential groupoids”, Comment. Math. Univ. Carolin., 49:1 (2008), 11–17 | MR | Zbl

[5] A. V. Kravchenko, “Minimal quasivarieties of differential groupoids with nonzero multiplication”, Siberian Electron. Math. Reports, 9 (2012), 201–207 (in Russian) | MR | Zbl

[6] A. V. Kravchenko, “The complexity of the lattices of quasivarieties for varieties of differential groupoids, II”, Siberian Adv. Math., 23 (2013), 84–90 | DOI | MR

[7] A. V. Kravchenko, A. Pilitowska, A. Romanowska, D. Stanovský, “Differential modes”, Internat. J. Algebra Comput., 18 (2008), 567–588 | DOI | MR | Zbl

[8] J. Płonka, “On algebras with $n$ distinct essentially $n$-ary operations”, Algebra Universalis, 1 (1971), 73–79 | DOI | MR | Zbl

[9] J. Płonka, “On $k$-cyclic groupoids”, Math. Japon., 30 (1985), 371–382 | MR | Zbl

[10] A. Romanowska, “On some representations of groupoid modes satisfying the reduction law”, Demonstratio Math., 21 (1988), 943–960 | MR | Zbl

[11] A. Romanowska, B. Roszkowska, “On some groupoid modes”, Demonstratio Math., 20 (1987), 277–290 | MR | Zbl

[12] A. Romanowska, B. Roszkowska, “Representation of $n$-cyclic groupoids”, Algebra Universalis, 26 (1989), 7–15 | DOI | MR | Zbl

[13] A. B. Romanowska, J. D. H. Smith, “Differential groupoids” (Vienna, 1990), Contributions to General Algebra, 7, Teubner, Stuttgart, 1991, 283–290 | MR | Zbl

[14] A. B. Romanowska, J. D. H. Smith, Modes, World Scientific, Singapore, 2002 | MR | Zbl

[15] D. Stanovský, “Abelian differential modes are quasi-affine”, Comment. Math. Univ. Carolin., 53 (2012), 461–473 | MR | Zbl