Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a16, author = {A. V. Kravchenko}, title = {Embeddings of differential groupoids into modules over commutative rings}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {599--606}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a16/} }
A. V. Kravchenko. Embeddings of differential groupoids into modules over commutative rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 599-606. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a16/
[1] R. Freese, R. McKenzie, Commutator Theory for Congruence Modular Varieties, Cambridge University Press, Cambridge, 1987 | MR | Zbl
[2] V. A. Gorbunov, Algebraic Theory of Quasivarieties, Consultants Bureau, New York, 1998 | MR | Zbl
[3] J. Ježek, T. Kepka, Medial Groupoids, Academia Nakladatelství Československé Akademie Ved, Praha, 1983 | MR | Zbl
[4] A. V. Kravchenko, “On the lattice of quasivarieties of differential groupoids”, Comment. Math. Univ. Carolin., 49:1 (2008), 11–17 | MR | Zbl
[5] A. V. Kravchenko, “Minimal quasivarieties of differential groupoids with nonzero multiplication”, Siberian Electron. Math. Reports, 9 (2012), 201–207 (in Russian) | MR | Zbl
[6] A. V. Kravchenko, “The complexity of the lattices of quasivarieties for varieties of differential groupoids, II”, Siberian Adv. Math., 23 (2013), 84–90 | DOI | MR
[7] A. V. Kravchenko, A. Pilitowska, A. Romanowska, D. Stanovský, “Differential modes”, Internat. J. Algebra Comput., 18 (2008), 567–588 | DOI | MR | Zbl
[8] J. Płonka, “On algebras with $n$ distinct essentially $n$-ary operations”, Algebra Universalis, 1 (1971), 73–79 | DOI | MR | Zbl
[9] J. Płonka, “On $k$-cyclic groupoids”, Math. Japon., 30 (1985), 371–382 | MR | Zbl
[10] A. Romanowska, “On some representations of groupoid modes satisfying the reduction law”, Demonstratio Math., 21 (1988), 943–960 | MR | Zbl
[11] A. Romanowska, B. Roszkowska, “On some groupoid modes”, Demonstratio Math., 20 (1987), 277–290 | MR | Zbl
[12] A. Romanowska, B. Roszkowska, “Representation of $n$-cyclic groupoids”, Algebra Universalis, 26 (1989), 7–15 | DOI | MR | Zbl
[13] A. B. Romanowska, J. D. H. Smith, “Differential groupoids” (Vienna, 1990), Contributions to General Algebra, 7, Teubner, Stuttgart, 1991, 283–290 | MR | Zbl
[14] A. B. Romanowska, J. D. H. Smith, Modes, World Scientific, Singapore, 2002 | MR | Zbl
[15] D. Stanovský, “Abelian differential modes are quasi-affine”, Comment. Math. Univ. Carolin., 53 (2012), 461–473 | MR | Zbl