Hypercentral automorphisms of nil-triangular subalgebras in Chevalley algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 467-477.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N\Phi(K)$ be the nil-triangular subalgebra of the Chevalley algebra over an associative commutative ring $K$ with the identity associated with a root system $\Phi$. (All elements $e_r \in \Phi^+$ of Chevalley basis give its basis.) We study automorphisms of the Lie ring $N\Phi(K)$; this problem is closely related to the modeltheoretic study of Lie rings $N\Phi(K)$. Our main theorem shows that the largest height of hypercentral automorphisms of $N\Phi(K)$ is bounded by a constant, except orthogonal cases $B_n$ and $D_n$, when $2K\neq K$.
Keywords: Chevalley algebra, height of hypercentral automorphism.
Mots-clés : nil-triangular subalgebra
@article{SEMR_2016_13_a14,
     author = {V. M. Levchuk and A. V. Litavrin},
     title = {Hypercentral automorphisms of nil-triangular subalgebras in {Chevalley} algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {467--477},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a14/}
}
TY  - JOUR
AU  - V. M. Levchuk
AU  - A. V. Litavrin
TI  - Hypercentral automorphisms of nil-triangular subalgebras in Chevalley algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 467
EP  - 477
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a14/
LA  - ru
ID  - SEMR_2016_13_a14
ER  - 
%0 Journal Article
%A V. M. Levchuk
%A A. V. Litavrin
%T Hypercentral automorphisms of nil-triangular subalgebras in Chevalley algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 467-477
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a14/
%G ru
%F SEMR_2016_13_a14
V. M. Levchuk; A. V. Litavrin. Hypercentral automorphisms of nil-triangular subalgebras in Chevalley algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 467-477. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a14/

[1] Hurley J. F., “Ideals in Chevalley algebras”, Trans. Amer. Math. Soc., 137:3 (1969), 245–258 | DOI | MR | Zbl

[2] Carter R., Simple groups of Lie type, Wiley and Sons, New York, 1972 | MR | Zbl

[3] Gibbs J., “Automorphisms of certain unipotent groups”, J. Algebra, 14:2 (1970), 203–228 | DOI | MR | Zbl

[4] Kondratiev A. S., “Subgroups of finite Chevalley groups”, Uspekhi matem. nauk, 41:1(247) (1986), 57–96 | MR

[5] Levchuk V.M., “Automorphisms of unipotent subgroups of Chevalley groups. I; II”, Algebra and Logic, 29:2 (1990), 97–112 ; 29:3, 211–224 | DOI | MR | Zbl | DOI | MR | Zbl

[6] Mal'cev A. I., “About one correspondence between rings and groups”, Math. Sbornik, 50 (1960), 257–266 | MR

[7] Beidar C.I., Mikhalev A.V., “On Malcev's theorem on elementary equivalence of linear groups”, Contemporary Math., 131, 1992, 29–35 | DOI | MR | Zbl

[8] Bunina E. I., Mikhalev A. V., “Elementary properties of linear groups and related questions”, J. Math. Sciences, 123:2 (2004), 3921–3985 | DOI | MR | Zbl

[9] Bunina E. I., “Elementary equivalence of Chevalley groups over local rings”, Math. sb., 201:3 (2010), 3–20 | DOI | MR | Zbl

[10] Videla C. R., “On the model theory of the ring NT (n, R)”, J. of Pure and Appl. Algebra, 55 (1988), 289–302 | DOI | MR | Zbl

[11] Levchuk V.M., “Automorphisms of some nilpotent matrix groups and rings”, Soviet Math. Dokl., 16:3 (1975), 756–760 | Zbl

[12] Rose B.I., “The $\chi_1-$categoricity of strictly upper triangular matrix rings over algebraically closed fields”, J. Symbolic Logic, 43:2 (1978), 250–259 | DOI | MR | Zbl

[13] Wheeler W.H., “Model Theory of strictly upper triangular matrix ring”, J. Symbolic Logic, 45 (1980), 455–463 | DOI | MR | Zbl

[14] Minakova E.V., “On the model theory of the rings of niltriangular matrices”, Journal SFU, Series Maths. and Physics, 2 (2008), 221–227

[15] Levchuk V.M., “Connections between the unitriangular group and certain rings. Part 2: Groups of automorphisms”, Siberian Mat. J., 24:4 (1983), 543–557 | DOI | MR | Zbl

[16] Belegradek O. V., “Model theory of unitriangular groups”, Amer. Math. Soc. Transl., 195:2 (1999), 1–116 | MR | Zbl

[17] Levchuk V.M., Minakova E.V., “Elementary equivalence and isomorphisms of locally nilpotent matrix groups and rings”, Dokl. RAN, 425:2 (2009), 165–168 | MR | Zbl

[18] Videla C. R., “On the Mal'cev correspondence”, Proceed. AMS, 109:2 (1990), 493–502 | MR | Zbl

[19] Levchuk V.M., “Questions of theoretic-model and structural for algebras and Chevalley groups”, Mathem. Forum. Groups and Graphs, 6, SMI VSC RAN, Vladikavkaz, 2011, 71–80

[20] Levchuk V. M., “Chevalley groups and their unipotent subgroups”, Contemp. Math., 131, AMS, 1992, 227–242 | DOI | MR

[21] Cao Y., Jiang D., Wang D., “Automorphisms of certain nilpotent algebras over commutative rings”, J. Algebra, 17:3 (2007), 527–555 | MR | Zbl

[22] Litavrin A.V., “Automorphisms of the nilpotent subalgebra $ N\Phi (K) $ Chevalley algebra of symplectic type”, Izvestiya Irkutsk St. Univ., series math., 8:3 (2015), 41–55

[23] Bourbaki N., Groupes et algebraes de Lie, v. IV-VI, Hermann, Paris, 1972 | MR

[24] Egorychev G. P., Levchuk V. M., “Enumeration in the Chevalley algebras”, ACM SIGSAM Bulletin, 35:2 (2001), 439–452 | DOI

[25] Levchuk V.M., Litavrin A.V., Hodyunya N.D., Tsigankov V.V., “Niltriangular subalgebras of the Chevalley algebras and their generalizations”, Vladikavkaz matem. zh., 17:2 (2015), 37–46 | MR