On finite groups generated by involutions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 426-433.

Voir la notice de l'article provenant de la source Math-Net.Ru

All groups in the abstract are finite. In theorem $1$ we prove that any group $A$, generated by $n$ involutions ($n \geq 3$), is a section $G/N$ of some group $B$, generated by three involutions (respectively, generated by an element of order $n$ and involution) in which $B/G$ is isomorphic $D_{2n}$ (respectively, $Z_n$). In theorem $2$ we consider the case when $A$ is a $2$-group. In theorem 3 and 4 we prove that any $2$-group is a section of a $2$-group generated by $3$ involutions and a section of a $2$-group generated by element of order $2^m$ and involution ($m$ may be arbitrary integer more than $1$). In the last part of the paper we construct some examples of $2$-groups, generated by $3$ involutions and of $2$-groups, generated by an element and involution of derived lengths $4$ and $3$ respectively.
Keywords: finite group generated by involutions; finite group generated by three involutions, finite $2$-group, Alperin group, definition of group by means of generators and defining relations.
@article{SEMR_2016_13_a13,
     author = {B. M. Veretennikov},
     title = {On finite groups generated by involutions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {426--433},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a13/}
}
TY  - JOUR
AU  - B. M. Veretennikov
TI  - On finite groups generated by involutions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 426
EP  - 433
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a13/
LA  - ru
ID  - SEMR_2016_13_a13
ER  - 
%0 Journal Article
%A B. M. Veretennikov
%T On finite groups generated by involutions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 426-433
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a13/
%G ru
%F SEMR_2016_13_a13
B. M. Veretennikov. On finite groups generated by involutions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 426-433. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a13/

[1] N. Bourbaki, Lie Groups and Lie Algebras: Chapters 4-6, Springer, 2008 | MR | Zbl

[2] H. S. M. Coxeter, W. O. J. Moser, Generators and Relations for Discrete Groups, Springer, Berlin–Heidelberg, 1980 | MR | Zbl

[3] L. Di Martino, M. C. Tamburini, “2-generation of finite simple groups and some related topics”, Generators and relations in groups and geometries, eds. A. Barlotti, E. W. Ellers, P. Plaumann, K. Strambach, Kluwer, Dordrecht, 1991, 195–233 | DOI | MR

[4] V. D. Mazurov, “On generation of sporadic simple groups by three involutions two of which commute”, Siberian Math. J., 44:1 (2003), 193–198 | DOI | MR | Zbl

[5] A. D. Ustyuzhaninov, “Finite 2-groups generated by exactly three involutions”, All-union algebr. symposium, Abstracts, v. I, Gomel, 1975, 72 (in Russian)

[6] Y. Berkovich, Z. Janko, Groups of prime power order, v. 2, Walter de Gruyter, Berlin–N.Y., 2008

[7] B. M. Veretennikov, “On the second commutants of finite Alperin groups”, Siberian Math. J., 55:1 (2014), 25–43 | DOI | MR | Zbl

[8] M. I. Kargapolov, J. I. Merzljakov, Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979 | MR | Zbl

[9] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, 2nd Revised ed., Dover Publications, 2004 | MR | Zbl

[10] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin–Heidelberg, 2001 | MR | Zbl

[11] B. M. Veretennikov, “On infinite Alperin groups”, Siberian Electronic Mathematical Reports, 12 (2015), 210–222