Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a13, author = {B. M. Veretennikov}, title = {On finite groups generated by involutions}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {426--433}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a13/} }
B. M. Veretennikov. On finite groups generated by involutions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 426-433. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a13/
[1] N. Bourbaki, Lie Groups and Lie Algebras: Chapters 4-6, Springer, 2008 | MR | Zbl
[2] H. S. M. Coxeter, W. O. J. Moser, Generators and Relations for Discrete Groups, Springer, Berlin–Heidelberg, 1980 | MR | Zbl
[3] L. Di Martino, M. C. Tamburini, “2-generation of finite simple groups and some related topics”, Generators and relations in groups and geometries, eds. A. Barlotti, E. W. Ellers, P. Plaumann, K. Strambach, Kluwer, Dordrecht, 1991, 195–233 | DOI | MR
[4] V. D. Mazurov, “On generation of sporadic simple groups by three involutions two of which commute”, Siberian Math. J., 44:1 (2003), 193–198 | DOI | MR | Zbl
[5] A. D. Ustyuzhaninov, “Finite 2-groups generated by exactly three involutions”, All-union algebr. symposium, Abstracts, v. I, Gomel, 1975, 72 (in Russian)
[6] Y. Berkovich, Z. Janko, Groups of prime power order, v. 2, Walter de Gruyter, Berlin–N.Y., 2008
[7] B. M. Veretennikov, “On the second commutants of finite Alperin groups”, Siberian Math. J., 55:1 (2014), 25–43 | DOI | MR | Zbl
[8] M. I. Kargapolov, J. I. Merzljakov, Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979 | MR | Zbl
[9] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, 2nd Revised ed., Dover Publications, 2004 | MR | Zbl
[10] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin–Heidelberg, 2001 | MR | Zbl
[11] B. M. Veretennikov, “On infinite Alperin groups”, Siberian Electronic Mathematical Reports, 12 (2015), 210–222