On the solvability of boundary value problems for quasilinear elliptic equations on noncompact Riemannian manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1026-1034

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the questions of the solvability for certain boundary and external boundary value problems for quasilinear elliptic equations on arbitrary non-compact Riemannian manifolds. We compare the behavior of unbounded functions "at infinity", using a new approach which is based on the consideration of equivalence classes of functions on $M$.
Keywords: quasilinear elliptic equation, boundary value problem, stability of the solvability, noncompact Riemannian manifolds, the Dirichlet problem.
Mots-clés : nonnegative solution
@article{SEMR_2016_13_a105,
     author = {E. A. Mazepa},
     title = {On the solvability of boundary value problems for quasilinear elliptic equations on noncompact {Riemannian} manifolds},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1026--1034},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a105/}
}
TY  - JOUR
AU  - E. A. Mazepa
TI  - On the solvability of boundary value problems for quasilinear elliptic equations on noncompact Riemannian manifolds
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1026
EP  - 1034
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a105/
LA  - ru
ID  - SEMR_2016_13_a105
ER  - 
%0 Journal Article
%A E. A. Mazepa
%T On the solvability of boundary value problems for quasilinear elliptic equations on noncompact Riemannian manifolds
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1026-1034
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a105/
%G ru
%F SEMR_2016_13_a105
E. A. Mazepa. On the solvability of boundary value problems for quasilinear elliptic equations on noncompact Riemannian manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1026-1034. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a105/