On the solvability of boundary value problems for quasilinear elliptic equations on noncompact Riemannian manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1026-1034.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the questions of the solvability for certain boundary and external boundary value problems for quasilinear elliptic equations on arbitrary non-compact Riemannian manifolds. We compare the behavior of unbounded functions "at infinity", using a new approach which is based on the consideration of equivalence classes of functions on $M$.
Keywords: quasilinear elliptic equation, boundary value problem, stability of the solvability, noncompact Riemannian manifolds, the Dirichlet problem.
Mots-clés : nonnegative solution
@article{SEMR_2016_13_a105,
     author = {E. A. Mazepa},
     title = {On the solvability of boundary value problems for quasilinear elliptic equations on noncompact {Riemannian} manifolds},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1026--1034},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a105/}
}
TY  - JOUR
AU  - E. A. Mazepa
TI  - On the solvability of boundary value problems for quasilinear elliptic equations on noncompact Riemannian manifolds
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1026
EP  - 1034
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a105/
LA  - ru
ID  - SEMR_2016_13_a105
ER  - 
%0 Journal Article
%A E. A. Mazepa
%T On the solvability of boundary value problems for quasilinear elliptic equations on noncompact Riemannian manifolds
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1026-1034
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a105/
%G ru
%F SEMR_2016_13_a105
E. A. Mazepa. On the solvability of boundary value problems for quasilinear elliptic equations on noncompact Riemannian manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1026-1034. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a105/

[1] A. Grigor'yan, “Analitic and geometric background of recurence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36 (1999), 135–249 | DOI | MR | Zbl

[2] B. Gidas, J. Spruck, “Global and local behavior of positive solutions of non-linear elliptic equations”, Comm. pure Appl. Math., 34 (1981), 525–598 | DOI | MR | Zbl

[3] J. Serrin, H. Zou, “Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities”, Acta Math., 189:1 (2002), 79–142 | DOI | MR | Zbl

[4] M. T. Anderson, “The Dirichlet problem at infinity for manifolds with negative curvature”, J. Diff. Geom., 18 (1983), 701–721 | MR | Zbl

[5] A. G. Losev, E. A. Mazepa, “On the asymptotic behavior of solutions of certain equations elliptic type on noncompact Riemannian manifolds”, Soviet Mathematics, 6 (1999), 41–49 | MR | Zbl

[6] A. G. Losev, E. A. Mazepa, “Bounded solutions of the Schrödinger equation on Riemannian products”, St. Petersburg Mathematical Journal, 13:1 (2001), 84–110 | MR

[7] E. A. Mazepa, “Boundary value problems for the stationary equation Schrödinger on Riemannian manifolds”, Siberian Mathematical Journal, 43:3 (2002), 591–599 | DOI | MR | Zbl

[8] A. A. Kon'kov, “Behavior of solutions of quasilinear elliptic inequalities”, Partial Differential Equations, Sovremennaya Matematika. Fundamental'nye Napravleniya (Contemporary Mathematics. Fundamental Directions), 7, 2004, 3–158 | MR | Zbl

[9] V. A. Kondratiev, E. M. Landis, “On qualitative properties of solutions of a nonlinear second-order equation”, Sbornik Mathematics, 135:3 (1988), 346–360 | MR | Zbl

[10] E. A. Mazepa, “Boundary Value Problems and Liouville theorems for semilinear elliptic equations on Riemannian manifolds”, Izvestiya VUZ, 49:3 (2005), 59–66 | MR | Zbl

[11] E. A. Mazepa, “On the existence of entire solutions of a semilinear elliptic equation on noncompact Riemannian manifolds”, Mathematical Notes, 81:1 (2007), 153–156 | MR | Zbl

[12] A. A. Grigor'yan, N. S. Nadirashvili, “Liouville theorems and exterior boundary value problems”, Soviet Mathematics, 31:5 (1987), 31–42 | MR | Zbl

[13] A. G. Losev, “The relationship between some Liouville theorems on Riemannian manifolds of a special type”, Soviet Mathematics, 41:10 (1997), 31–37 | MR | Zbl

[14] S. A. Korol'kov, A. G. Losev, “Solutions for elliptic equations on Riemannian manifolds with ends”, Science Journal of VolSU. Mathematics. Physics, 14:1 (2011), 23–40

[15] A. G. Losev, E. A. Mazepa, V. Y. Chebanenko, “Unbounded solutions of the stationary of the stationary Schrodinger equation on Riemannian manifolds”, CMFT, 3:2 (2003), 443–451 | MR | Zbl

[16] E. A. Mazepa, “On the asymptotic behavior of solutions of some semilinear elliptic equations on noncompact Riemannian manifolds”, Science Journal of VolSU. Mathematics. Physics, 14:1 (2011), 41–59

[17] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math Wiss., 224, Springer-Verlag, Berlin–New York, 1983 | MR | Zbl

[18] A. G. Losev, “Some Liouville theorems on noncompact Riemannian manifolds”, Siberian Mathematical Journal, 39:1 (1998), 87–93 | DOI | MR | Zbl

[19] E. A. Mazepa, “On the solvability of boundary value problems for semilinear elliptic equations on noncompact Riemannian manifolds”, Science Journal of VolSU. Mathematics. Physics, 23:4 (2014), 36–44