Research of a threshold (correlation) method and application for localization of singularities
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 829-848

Voir la notice de l'article provenant de la source Math-Net.Ru

The localization of singularities for functions of one ($\delta$-functions and discontinuities of the first kind) and two (line of discontinuity) dimensions is discussed. General scheme of the study of this ill-posed problems is presented. Using this scheme new problems of localization of singularities are investigated.
Keywords: ill-posed problems, discontinuities of the first kind, line of discontinuity, localization of singularities, regularizing method, separation threshold.
@article{SEMR_2016_13_a104,
     author = {D. V. Kurlikovskii and A. L. Ageev and T. V. Antonova},
     title = {Research of a threshold (correlation) method and application for localization of singularities},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {829--848},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a104/}
}
TY  - JOUR
AU  - D. V. Kurlikovskii
AU  - A. L. Ageev
AU  - T. V. Antonova
TI  - Research of a threshold (correlation) method and application for localization of singularities
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 829
EP  - 848
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a104/
LA  - ru
ID  - SEMR_2016_13_a104
ER  - 
%0 Journal Article
%A D. V. Kurlikovskii
%A A. L. Ageev
%A T. V. Antonova
%T Research of a threshold (correlation) method and application for localization of singularities
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 829-848
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a104/
%G ru
%F SEMR_2016_13_a104
D. V. Kurlikovskii; A. L. Ageev; T. V. Antonova. Research of a threshold (correlation) method and application for localization of singularities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 829-848. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a104/