Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a104, author = {D. V. Kurlikovskii and A. L. Ageev and T. V. Antonova}, title = {Research of a threshold (correlation) method and application for localization of singularities}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {829--848}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a104/} }
TY - JOUR AU - D. V. Kurlikovskii AU - A. L. Ageev AU - T. V. Antonova TI - Research of a threshold (correlation) method and application for localization of singularities JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 829 EP - 848 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a104/ LA - ru ID - SEMR_2016_13_a104 ER -
%0 Journal Article %A D. V. Kurlikovskii %A A. L. Ageev %A T. V. Antonova %T Research of a threshold (correlation) method and application for localization of singularities %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 829-848 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a104/ %G ru %F SEMR_2016_13_a104
D. V. Kurlikovskii; A. L. Ageev; T. V. Antonova. Research of a threshold (correlation) method and application for localization of singularities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 829-848. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a104/
[1] V. Yu. Terebizh, “Image restoration with minimum a priori information”, Phys. Usp., 38:2 (1995), 137–167 | DOI
[2] V. Yu. Terebizh, Introduction to statistical theory of inverse problems, Phizmatlit, M., 2005 (in Russian)
[3] A. V. Goncharskii, A. M. Cherepaschuk, A. G. Yagola, Numerical methods of solving inverse problems of astrophysics, Nauka, M., 1978 (in Russian) | Zbl
[4] G. Winkler, O. Wittich, V. Liebscher, A. Kempe, “Don't shed tears over breaks”, Jahresber. Deutsch. Math.-Verein, 107:2 (2005), 57–87 | MR | Zbl
[5] C. G. M. Oudshoorn, “Asymptotically minimax estimation of a function with jumps”, Bernoulli, 4:1 (1998), 15–33 | DOI | MR | Zbl
[6] V. S. Sizikov, Mathematical methods for processing the results of measurements, Politekhnika, St. Petersburg, 2001 (in Russian) | MR
[7] E. Yu. Derevtsov, V. V. Pickalov, “Reconstruction of vector fields and their singularities from ray transform”, Numerical Analysis and Applications, 4:1 (2011), 21–35 | DOI | Zbl
[8] S. Mallat, A wavelet tour of signal processing: the sparse way, Academic Press, San Diego, CA, 1999 | MR | Zbl
[9] Ya. A. Furman et al. (eds.), Introduction to contour analysis and its applications to image and signal processing, Fizmatlit, M., 2002 (in Russian)
[10] A. N. Tikhonov, V. Y. Arsenin, Solutions of ill-posed problems, Wiley, New York, 1977 | MR | Zbl
[11] V. K. Ivanov, V. V. Vasin, V. P. Tanana, Theory of linear ill-posed problems and its applications, VSP, Utrecht, 2002 | MR | Zbl
[12] V. V. Vasin, A. L. Ageev, Ill-posed problems with a priori information, VSP, Utrecht, 1995 | MR | Zbl
[13] A. L. Ageev, T. V. Antonova, “On a new class of ill-posed problems”, Izv. Ural'sk. Gos. Univ., 58 (2008), 24–42 (in Russian) | MR | Zbl
[14] A. L. Ageev, T. V. Antonova, “On ill-posed problems of localization of singularities”, Tr. Inst. Mat. Mech. UrO RAN, 17, no. 3, 2011, 30–45 (in Russian)
[15] A. L. Ageev, T. V. Antonova, “Regularizing algorithms for detecting discontinuities in ill-posed problems”, Comput. Math. and Math. Phys., 48:8 (2008), 1284–1292 | DOI | MR | Zbl
[16] T. V. Antonova, “Regularizing algorithms for localization of breakpoints of noisy functions convection”, Proceedings of the Steklov Institute of Mathematics, 2, 2009, 24–39 | DOI | MR | Zbl
[17] T. V. Antonova, “New methods for localizing discontinuities of a noisy function”, Numerical Analysis and Application, 3:4 (2010), 306–316 | DOI | Zbl
[18] T. V. Antonova, “A method for localization of discontinuity lines of an approximately defined function of two variables”, Numerical Analysis and Application, 5:4 (2012), 285–296 | DOI | Zbl
[19] A. L. Ageev, T. V. Antonova, “Approximation of discontinuity lines of a noisy function of two variables”, Journal of Applied and Industrial Mathematics, 6:3 (2012) | DOI | MR
[20] A. L. Ageev, T. V. Antonova, “Localization algorithms for singularities of solutions to convolution equation of the first kind”, J. Inverse and Ill-Posed Problems, 16:7 (2008), 639–650 | DOI | MR | Zbl
[21] D. V. Kurlikovskii, “Methods of localization of discontinuities in solution of first kind equation of convolution type”, Russian Mathematics, 58:3 (2014), 60–63 | DOI | MR | Zbl
[22] V. I. Bogachev, Fundamentals of measure theory, v. I, Regular and Chaotic Dynamics, M.–Izhevsk, 2006 (in Russian)
[23] E. M. Stein, G. L. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971 | MR | Zbl