Embedding central extensions of simple linear groups into wreath products
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 361-365.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find a criterion for the embedding of a nonsplit central extension of $\mathrm{PSL}_n(q)$ with kernel of prime order into the permutation wreath product that corresponds to the action on the projective space.
Keywords: finite simple groups, central cover, group cohomology.
Mots-clés : permutation module
@article{SEMR_2016_13_a10,
     author = {Andrei V. Zavarnitsine},
     title = {Embedding central extensions of simple linear groups into wreath products},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {361--365},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a10/}
}
TY  - JOUR
AU  - Andrei V. Zavarnitsine
TI  - Embedding central extensions of simple linear groups into wreath products
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 361
EP  - 365
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a10/
LA  - en
ID  - SEMR_2016_13_a10
ER  - 
%0 Journal Article
%A Andrei V. Zavarnitsine
%T Embedding central extensions of simple linear groups into wreath products
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 361-365
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a10/
%G en
%F SEMR_2016_13_a10
Andrei V. Zavarnitsine. Embedding central extensions of simple linear groups into wreath products. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 361-365. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a10/

[1] N. V. Maslova, “Finite groups with arithmetic restrictions on maximal subgroups”, Algebra and Logic, 54:1 (2015), 65–69 | Zbl

[2] A. V. Zavarnitsine, “Subextensions for a permutation ${\rm PSL}_2(q)$-module”, Sib. Elect. Math. Reports, 10 (2013), 551–557 | Zbl

[3] K. W. Gruenberg, Cohomological topics in group theory, Lect. Notes Math., 143, Springer-Verlag, Berlin–New York, 1970, 275 pp. | Zbl

[4] B. Mortimer, “The modular permutation representations of the known doubly transitive groups”, Proc. London Math. Soc. III, 41 (1980), 1–20 | Zbl

[5] J. Bray, A new family of modules with $2$-dimensional $1$-cohomology, preprint, 2007, 5 pp.

[6] V. P. Burichenko, On some cohomologies of groups $\operatorname{L}_n(q)$\, abstract, Gomel, 2009, 1 pp.

[7] Ch. A. Weibel, An introduction to homological algebra, Camb. Studies Adv. Math., 38, Camb. Univ. Press, Cambridge, 1994, 450 pp. | Zbl

[8] V. D. Mazurov, “Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups”, Algebra and Logic, 32:3 (1993), 142–153 | Zbl