Mots-clés : permutation module
@article{SEMR_2016_13_a10,
author = {Andrei V. Zavarnitsine},
title = {Embedding central extensions of simple linear groups into wreath products},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {361--365},
year = {2016},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a10/}
}
Andrei V. Zavarnitsine. Embedding central extensions of simple linear groups into wreath products. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 361-365. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a10/
[1] N. V. Maslova, “Finite groups with arithmetic restrictions on maximal subgroups”, Algebra and Logic, 54:1 (2015), 65–69 | Zbl
[2] A. V. Zavarnitsine, “Subextensions for a permutation ${\rm PSL}_2(q)$-module”, Sib. Elect. Math. Reports, 10 (2013), 551–557 | Zbl
[3] K. W. Gruenberg, Cohomological topics in group theory, Lect. Notes Math., 143, Springer-Verlag, Berlin–New York, 1970, 275 pp. | Zbl
[4] B. Mortimer, “The modular permutation representations of the known doubly transitive groups”, Proc. London Math. Soc. III, 41 (1980), 1–20 | Zbl
[5] J. Bray, A new family of modules with $2$-dimensional $1$-cohomology, preprint, 2007, 5 pp.
[6] V. P. Burichenko, On some cohomologies of groups $\operatorname{L}_n(q)$\, abstract, Gomel, 2009, 1 pp.
[7] Ch. A. Weibel, An introduction to homological algebra, Camb. Studies Adv. Math., 38, Camb. Univ. Press, Cambridge, 1994, 450 pp. | Zbl
[8] V. D. Mazurov, “Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups”, Algebra and Logic, 32:3 (1993), 142–153 | Zbl