On the realizability of a graph as the Gruenberg--Kegel graph of a finite group
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 89-100

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. Denote by $\pi(G)$ the set of all prime divisors of the order of $G$ and by $\omega (G)$ the spectrum of $G$, i.e. the set of all its element orders. The set $\omega(G)$ defines the Gruenberg–Kegel graph (or the prime graph) $\Gamma(G)$ of $G$; in this graph the vertex set is $\pi(G)$ and different vertices $p$ and $q$ are adjacent if and only if $pq\in\omega (G)$. We say that a graph $\Gamma$ with $|\pi(G)|$ vertices is realizable as the Gruenberg–Kegel graph of a group $G$ if there exists a vertices marking of $\Gamma$ by distinct primes from $\pi(G)$ such that the marked graph is equal to $\Gamma(G)$. A graph $\Gamma$ is realizable as the Gruenberg–Kegel graph of a group if $\Gamma$ is realizable as the Gruenberg–Kegel graph of an appropriate group $G$. We prove that a complete bipartite graph $K_{m,n}$ is realizable as the Gruenberg–Kegel graph of a group if and only if $m+n \le 6$ and $(m,n)\not =(3,3)$. Moreover, we describe all the groups $G$ such that the graph $K_{1,5}$ is realizable as the Gruenberg–Kegel graph of $G$.
Keywords: finite group, Gruenberg–Kegel graph (prime graph), realizability of a graph, complete bipartite graph.
@article{SEMR_2016_13_a1,
     author = {N. V. Maslova and D. Pagon},
     title = {On the realizability of a graph as the {Gruenberg--Kegel} graph of a finite group},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {89--100},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a1/}
}
TY  - JOUR
AU  - N. V. Maslova
AU  - D. Pagon
TI  - On the realizability of a graph as the Gruenberg--Kegel graph of a finite group
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 89
EP  - 100
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a1/
LA  - en
ID  - SEMR_2016_13_a1
ER  - 
%0 Journal Article
%A N. V. Maslova
%A D. Pagon
%T On the realizability of a graph as the Gruenberg--Kegel graph of a finite group
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 89-100
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a1/
%G en
%F SEMR_2016_13_a1
N. V. Maslova; D. Pagon. On the realizability of a graph as the Gruenberg--Kegel graph of a finite group. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 89-100. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a1/