On the realizability of a graph as the Gruenberg--Kegel graph of a finite group
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 89-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. Denote by $\pi(G)$ the set of all prime divisors of the order of $G$ and by $\omega (G)$ the spectrum of $G$, i.e. the set of all its element orders. The set $\omega(G)$ defines the Gruenberg–Kegel graph (or the prime graph) $\Gamma(G)$ of $G$; in this graph the vertex set is $\pi(G)$ and different vertices $p$ and $q$ are adjacent if and only if $pq\in\omega (G)$. We say that a graph $\Gamma$ with $|\pi(G)|$ vertices is realizable as the Gruenberg–Kegel graph of a group $G$ if there exists a vertices marking of $\Gamma$ by distinct primes from $\pi(G)$ such that the marked graph is equal to $\Gamma(G)$. A graph $\Gamma$ is realizable as the Gruenberg–Kegel graph of a group if $\Gamma$ is realizable as the Gruenberg–Kegel graph of an appropriate group $G$. We prove that a complete bipartite graph $K_{m,n}$ is realizable as the Gruenberg–Kegel graph of a group if and only if $m+n \le 6$ and $(m,n)\not =(3,3)$. Moreover, we describe all the groups $G$ such that the graph $K_{1,5}$ is realizable as the Gruenberg–Kegel graph of $G$.
Keywords: finite group, Gruenberg–Kegel graph (prime graph), realizability of a graph, complete bipartite graph.
@article{SEMR_2016_13_a1,
     author = {N. V. Maslova and D. Pagon},
     title = {On the realizability of a graph as the {Gruenberg--Kegel} graph of a finite group},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {89--100},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a1/}
}
TY  - JOUR
AU  - N. V. Maslova
AU  - D. Pagon
TI  - On the realizability of a graph as the Gruenberg--Kegel graph of a finite group
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 89
EP  - 100
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a1/
LA  - en
ID  - SEMR_2016_13_a1
ER  - 
%0 Journal Article
%A N. V. Maslova
%A D. Pagon
%T On the realizability of a graph as the Gruenberg--Kegel graph of a finite group
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 89-100
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a1/
%G en
%F SEMR_2016_13_a1
N. V. Maslova; D. Pagon. On the realizability of a graph as the Gruenberg--Kegel graph of a finite group. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 89-100. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a1/

[1] O. A. Alekseeva, A. S. Kondrat'ev, “Finite groups whose prime graphs do not contain triangles, I”, Trudy Inst. Mat. Mekh. UrO RAN, 21, no. 3, 2015, 3–12 (in Russian)

[2] R. Wilson, et. al., Atlas of finite group representations, http://brauer.maths.qmul.ac.uk/Atlas/

[3] J. N. Bray, D. F. Holt, C. M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, Cambridge Univ. Press, Cambridge, 2013 | MR | Zbl

[4] J. H. Conway, et. al., Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[5] C. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, AMS Chelsea Publishing, Providence, 1962 | MR

[6] A. L. Gavrilyuk, I. V. Khramtsov, A. S. Kondrat'ev, N. V. Maslova, “On realizability of a graph as the prime graph of a finite group”, Sib. Electron. Mat. Izv,, 11 (2014), 246–257 | Zbl

[7] G. C. Gerono, “Note sur la resolution en nombres entiers et positifs de l'equation $x^m = y^n-1$”, Nouv. Ann. Math. (2), 9 (1870), 469–471

[8] D. Gorenstein, Finite groups, Harper and Row, N. Y., 1968 | MR | Zbl

[9] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, v. 3, Math. Surv. Monogr., 40, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[10] Gruber A., et. al., “A Characterization of the prime graphs of solvable groups”, Corrected Proof, J. Algebra (to appear)

[11] F. Harrary, Graph theory, Addison-Wesley, Massachussets, 1969 | MR

[12] G. Higman, “Finite groups in which every element has prime power order”, J. London Math. Soc. (2), 32 (1957), 335–342 | DOI | MR | Zbl

[13] A. S. Kondrat'ev, “Finite groups having the same prime graph as the group $Aut(J_2)$”, Proceedings of the Steklov Institute of Mathematics, 283, no. 1, 2013, 78–85 | DOI

[14] A. S. Kondrat'ev, “Prime graph components of finite simple groups”, Math. USSR Sb., 67 (1990), 235–247 | DOI | MR | Zbl

[15] A. S. Kondrat'ev, V. D. Mazurov, “Recognizibility of alternating groups of prime degree by their element orders”, Sib. Math. J., 41:2 (2000), 359–369 | MR | Zbl

[16] M. S. Lucido, “Groups in which the prime graph is a tree”, Bol lettino del l'Unione Matematica Italiana, Serie 8, 5-B:1 (2002), 131–148 | MR | Zbl

[17] M. C. Lucido, “The diameter of the prime graph of finite groups”, J. Group Theory, 2:2 (1999), 157–172 | DOI | MR | Zbl

[18] N. V. Maslova, “On the coincidence of Gruenberg–Kegel graphs of a finite simple group and its proper subgroup”, Proc. Steklov Inst. Math., 288, no. 1, 2015, 129–141 | DOI | MR

[19] V. D. Mazurov, “Characterizations of finite groups by sets of orders of their elements”, Algebra and Logic, 36:1 (1997), 23–32 | DOI | MR | Zbl

[20] A. V. Vasil'ev, “On connection between the structure of a finite group and the properties of its prime graph”, Sib. Math. J., 46:3 (2005), 396–404 | DOI | MR | Zbl

[21] A. V. Vasil'ev, E. P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group”, Algebra and Logic, 44:6 (2005), 381–406 | DOI | MR | Zbl

[22] A. V. Vasil'ev, E. P. Vdovin, “Cocliques of maximal size in the prime graph of a finite simple group”, Algebra and Logic, 50:4 (2011), 291–322 | DOI | MR | Zbl

[23] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[24] H. Zassenhaus, “Über endliche Fastkorper”, Abhandl. math. Semin. Univ. Hamburg, 11 (1936), 187–220 | DOI | MR

[25] I. N. Zharkov, On groups whose prime graph is a chain, Bachelor work, Novosibirsk State University, 2008, unpublished (In Russian)

[26] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3:1 (1892), 265–284 | DOI | MR | Zbl

[27] M. R. Zinov'eva, V. D. Mazurov, “On finite groups with disconnected prime graph”, Proc. Steklov Inst. Math., 283, no. 1, 2013, 139–145 | DOI