The Cayley graphs of Burnside groups of exponent~$3$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 248-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B_k=B(k,3)$ be the $k$-generator Burnside group of exponent $3$. Previously unknown Hall’s polynomials of $B_k$ for $k\leq 4$ are calculated. For $k>4$ polynomials are calculated similarly but their output takes considerably more space. Then using computer calculations for $2\leq k\leq 4$ were obtained diameters and average diameters of the Cayley graphs of $ B_k $ and their some factors generated by the symmetric generating sets. It is shown that these graphs have better characteristics than hypercubes. It can be concluded that the Cayley graphs of $ B_k $ deserve attention in the design of advanced topologies of multiprocessor computer systems.
Keywords: periodic group, collection process, Hall’s polynomials, the Cayley graph, multiprocessor computer system.
@article{SEMR_2015_12_a9,
     author = {A. A. Kuznetsov},
     title = {The {Cayley} graphs of {Burnside} groups of exponent~$3$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {248--254},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a9/}
}
TY  - JOUR
AU  - A. A. Kuznetsov
TI  - The Cayley graphs of Burnside groups of exponent~$3$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 248
EP  - 254
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a9/
LA  - ru
ID  - SEMR_2015_12_a9
ER  - 
%0 Journal Article
%A A. A. Kuznetsov
%T The Cayley graphs of Burnside groups of exponent~$3$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 248-254
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a9/
%G ru
%F SEMR_2015_12_a9
A. A. Kuznetsov. The Cayley graphs of Burnside groups of exponent~$3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 248-254. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a9/

[1] S. Akers, B. Krishnamurthy, “A group theoretic model for symmetric interconnection networks”, Proceedings of the International Conference on Parallel Processing, 1986, 216–223

[2] S. Even, O. Goldreich, “The Minimum Length Generator Sequence is NP-Hard”, Journal of Algorithms, 2 (1981), 311–313 | DOI | MR

[3] F. Levi, B. van der Waerden, “Uber eine besondere Klasse von Gruppen”, Abh. Math. Sem. Univ. Hamburg, 9 (1933), 154–158 | DOI | MR

[4] C. Sims, Computation with Finitely Presented Groups, Cambridge University Press, Cambridge, 1994 | MR

[5] D. Holt, B. Eick, E. O'Brien, Handbook of computational group theory, Chapman Hall/CRC Press, Boca Raton, 2005 | MR

[6] P. Hall, Nilpotent groups, Notes of lectures given at the Canadian Mathematical Congress 1957 Summer Seminar, The collected works of Philip Hall, Clarendon Press, Oxford, 1988

[7] A. A. Kuznetsov, A. S. Kuznetsova, “A parallel algorithm for study of the Cayley graphs of permutation griops”, Vestnik SibGAU, 1 (2014), 34–39