Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a9, author = {A. A. Kuznetsov}, title = {The {Cayley} graphs of {Burnside} groups of exponent~$3$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {248--254}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a9/} }
A. A. Kuznetsov. The Cayley graphs of Burnside groups of exponent~$3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 248-254. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a9/
[1] S. Akers, B. Krishnamurthy, “A group theoretic model for symmetric interconnection networks”, Proceedings of the International Conference on Parallel Processing, 1986, 216–223
[2] S. Even, O. Goldreich, “The Minimum Length Generator Sequence is NP-Hard”, Journal of Algorithms, 2 (1981), 311–313 | DOI | MR
[3] F. Levi, B. van der Waerden, “Uber eine besondere Klasse von Gruppen”, Abh. Math. Sem. Univ. Hamburg, 9 (1933), 154–158 | DOI | MR
[4] C. Sims, Computation with Finitely Presented Groups, Cambridge University Press, Cambridge, 1994 | MR
[5] D. Holt, B. Eick, E. O'Brien, Handbook of computational group theory, Chapman Hall/CRC Press, Boca Raton, 2005 | MR
[6] P. Hall, Nilpotent groups, Notes of lectures given at the Canadian Mathematical Congress 1957 Summer Seminar, The collected works of Philip Hall, Clarendon Press, Oxford, 1988
[7] A. A. Kuznetsov, A. S. Kuznetsova, “A parallel algorithm for study of the Cayley graphs of permutation griops”, Vestnik SibGAU, 1 (2014), 34–39