Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a86, author = {M. V. Tryamkin}, title = {On asymptotic curves and values in the theory of mappings with weighted bounded distortion}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {688--697}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a86/} }
TY - JOUR AU - M. V. Tryamkin TI - On asymptotic curves and values in the theory of mappings with weighted bounded distortion JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 688 EP - 697 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a86/ LA - en ID - SEMR_2015_12_a86 ER -
M. V. Tryamkin. On asymptotic curves and values in the theory of mappings with weighted bounded distortion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 688-697. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a86/
[1] Yu. G. Reshetnyak, Space mappings with bounded distortion, Translation of Mathematical Monographs, 73, American Mathematical Society, Providence, RI, 1989 | MR | Zbl
[2] O. Martio, S. Rickman, J. Väisälä, “Distortion and Singularities of Quasiregular Mappings”, Ann. Acad. Sci. Fenn. Ser. A.I., 465 (1970), 1–13 | MR
[3] Math. USSR Sb., 21 (1973) | MR
[4] S. Rickman, Quasiregular Mappings, Springer-Verlag, 1993 | MR | Zbl
[5] A. N. Baykin, S. K. Vodop'yanov, “Capacity estimates, Liouville's theorem, and singularity removal for mappings with bounded $(p,q)$-distortion”, Siberian Math. J., 56:2 (2015), 237–261 | DOI
[6] W. Hurewicz, H. Wallman, Dimension theory, Princeton Mathematical Series, 4, Princeton University Press, 1941 | MR | Zbl
[7] V. G. Maz'ja, Sobolev Spaces, Springer-Verlag, 1985 | MR
[8] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, 1993 | MR | Zbl
[9] E. M. Stein, Harmonic Analysis: Real-Variable Method, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993 | MR
[10] J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer-Verlag, 1971 | MR | Zbl
[11] M. V. Tryamkin, “Modulus inequalities for mappings with weighted bounded $(p,q)$-distortion”, Siberian Math. J., 56:6 (2015) (to appear)
[12] E. A. Sevost'yanov, Investigation of space mappings by the geometric method, Naukova dumka, Kiev, 2014 (in Russian)