On upper topological limit of family of vector subspaces of codimension~$k$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 432-435
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{L_\alpha\mid \alpha\in I\}$ be an infinite family of subspaces in a topological vector space $X$ the codimension of each of which is at most $k$. We prove that there exists a subspace $L\subset X$, $\operatorname{codim} L\leq k$, such that every $x\in L$ is a limit point of some family $\{l_\alpha\in L_\alpha\}$.
Keywords:
upper topological limit.
@article{SEMR_2015_12_a84,
author = {K. V. Storozhuk},
title = {On upper topological limit of family of vector subspaces of codimension~$k$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {432--435},
publisher = {mathdoc},
volume = {12},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a84/}
}
TY - JOUR AU - K. V. Storozhuk TI - On upper topological limit of family of vector subspaces of codimension~$k$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 432 EP - 435 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a84/ LA - ru ID - SEMR_2015_12_a84 ER -
K. V. Storozhuk. On upper topological limit of family of vector subspaces of codimension~$k$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 432-435. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a84/