Non-regular graph coverings and lifting the hyperelliptic involution
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 372-380.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that there exists a non-regular hyperelliptic covering of any odd degree over a hyperelliptic graph. Also, some properties of a dihedral covering, with a rotation being of odd degree, over a genus two hyperelliptic graph are derived. In the proof, the Bass–Serre theory is employed.
Keywords: Riemann surface, graph, hyperelliptic involution, fundamental group, harmonic map, branched covering, non-regular covering, graph of groups.
Mots-clés : hyperelliptic graph, automorphism group
@article{SEMR_2015_12_a83,
     author = {Maxim P. Limonov},
     title = {Non-regular graph coverings and lifting the hyperelliptic involution},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {372--380},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a83/}
}
TY  - JOUR
AU  - Maxim P. Limonov
TI  - Non-regular graph coverings and lifting the hyperelliptic involution
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 372
EP  - 380
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a83/
LA  - en
ID  - SEMR_2015_12_a83
ER  - 
%0 Journal Article
%A Maxim P. Limonov
%T Non-regular graph coverings and lifting the hyperelliptic involution
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 372-380
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a83/
%G en
%F SEMR_2015_12_a83
Maxim P. Limonov. Non-regular graph coverings and lifting the hyperelliptic involution. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 372-380. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a83/

[1] R. D. M. Accola, “On lifting the hyperelliptic involution”, Proc. Amer. Math. Soc., 122:2 (1994), 341–347 | DOI | MR | Zbl

[2] I. Mednykh, “Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2”, Mathematical Notes, 96:1 (2014), 84–94 | DOI | Zbl

[3] A. Mednykh, I. Mednykh, “On Wiman's theorem for graphs”, Discrete Mathematics, 338 (2015), 1793–1800 | DOI | MR | Zbl

[4] M. T. Green, Graphs of groups, Ph. D. Thesis, Department of Mathematics in the Graduate School of The University of Alabama, Tuscaloosa, 2012 | MR

[5] J.-P. Serre, Trees, Springer-Verlag, New York, 1980 | MR | Zbl

[6] A. Malnič, R. Nedela, M. Škoviera, “Lifting graph automorphisms by voltage assignments”, European Journal of Combinatorics, 21:7 (2000), 927–947 | DOI | MR | Zbl

[7] M. Baker, S. Norine, “Harmonic morphisms and hyperelliptic graphs”, Int. Math. Res. Notes, 15 (2009), 2914–2955 | MR | Zbl

[8] H. Urakawa, “A discrete analogue of the harmonic morphism and Green kernel comparison theorems”, Glasg. Math. J., 42:3 (2000), 319–334 | DOI | MR | Zbl

[9] S. Corry, “Genus bounds for harmonic group actions on finite graphs”, Int. Math. Res. Notices, 19 (2011), 4515–4533 | MR | Zbl

[10] T. Taniguchi, “On the Euler-characteristic and the signature of G-manifolds”, Proc. Japan Acad., 49:2 (1973), 130–133 | DOI | MR | Zbl

[11] H. Bass, “Covering theory for graphs of groups”, Journal of Pure and Applied Algebra, 89 (1993), 3–47 | DOI | MR | Zbl

[12] M. P. Limonov, “Accola theorem on hyperelliptic graphs”, Ars Mathematica Contemporanea (to appear)

[13] W. S. Massey, Algebraic topology, an introduction, 4th corrected printing, Springer-Verlag, New York, 1977 | MR | Zbl