Non-regular graph coverings and lifting the hyperelliptic involution
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 372-380

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that there exists a non-regular hyperelliptic covering of any odd degree over a hyperelliptic graph. Also, some properties of a dihedral covering, with a rotation being of odd degree, over a genus two hyperelliptic graph are derived. In the proof, the Bass–Serre theory is employed.
Keywords: Riemann surface, graph, hyperelliptic involution, fundamental group, harmonic map, branched covering, non-regular covering, graph of groups.
Mots-clés : hyperelliptic graph, automorphism group
@article{SEMR_2015_12_a83,
     author = {Maxim P. Limonov},
     title = {Non-regular graph coverings and lifting the hyperelliptic involution},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {372--380},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a83/}
}
TY  - JOUR
AU  - Maxim P. Limonov
TI  - Non-regular graph coverings and lifting the hyperelliptic involution
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 372
EP  - 380
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a83/
LA  - en
ID  - SEMR_2015_12_a83
ER  - 
%0 Journal Article
%A Maxim P. Limonov
%T Non-regular graph coverings and lifting the hyperelliptic involution
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 372-380
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a83/
%G en
%F SEMR_2015_12_a83
Maxim P. Limonov. Non-regular graph coverings and lifting the hyperelliptic involution. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 372-380. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a83/