De Rham regularization operators in Orlicz spaces of differential forms on Riemannian manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 361-371
Voir la notice de l'article provenant de la source Math-Net.Ru
In his classical monograph Variétés Différentiables (Paris: Hermann, 1955), G. de Rham introduced smoothing operators on currents on a differentiable manifold. We study some properties of the restrictions of these operators to Orlicz spaces of differential forms on a Riemannian manifold. In particular, we prove that if an $N$-function $\Phi$ is $\Delta_2$-regular then the $L_\Phi$-cohomology of a Riemannian manifold can be calculated with the use of smooth $L^\Phi$-forms.
Keywords:
Riemannian manifold, differential form, de Rham regularization operator, Orlicz space, operator of exterior derivation, $L_\Phi$-cohomology.
@article{SEMR_2015_12_a82,
author = {Ya. A. Kopylov and R. A. Panenko},
title = {De {Rham} regularization operators in {Orlicz} spaces of differential forms on {Riemannian} manifolds},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {361--371},
publisher = {mathdoc},
volume = {12},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a82/}
}
TY - JOUR AU - Ya. A. Kopylov AU - R. A. Panenko TI - De Rham regularization operators in Orlicz spaces of differential forms on Riemannian manifolds JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 361 EP - 371 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a82/ LA - en ID - SEMR_2015_12_a82 ER -
%0 Journal Article %A Ya. A. Kopylov %A R. A. Panenko %T De Rham regularization operators in Orlicz spaces of differential forms on Riemannian manifolds %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2015 %P 361-371 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a82/ %G en %F SEMR_2015_12_a82
Ya. A. Kopylov; R. A. Panenko. De Rham regularization operators in Orlicz spaces of differential forms on Riemannian manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 361-371. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a82/