On continuous linear functionals in some weighted functional classes on~product domains
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 651-678.

Voir la notice de l'article provenant de la source Math-Net.Ru

This expository article provides an overview of some new research results of authors and their colleagues regarding the problem of description of continuous linear functionals in weighted spaces of analytic and $n$-harmonic functions in one dimension case and $n$-dimensional complex space $C^n$. New extension is discussed, some new interesting problems in analytic spaces in product domains are also discussed.
Keywords: weighted spaces, linear continuous functionals, conjugate space, analytic functions, polydisk, unit ball, tubular domains.
Mots-clés : pseudoconvex domains
@article{SEMR_2015_12_a78,
     author = {R. F. Shamoyan and N. M. Makhina},
     title = {On continuous linear functionals in some weighted functional classes on~product domains},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {651--678},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a78/}
}
TY  - JOUR
AU  - R. F. Shamoyan
AU  - N. M. Makhina
TI  - On continuous linear functionals in some weighted functional classes on~product domains
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 651
EP  - 678
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a78/
LA  - en
ID  - SEMR_2015_12_a78
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%A N. M. Makhina
%T On continuous linear functionals in some weighted functional classes on~product domains
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 651-678
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a78/
%G en
%F SEMR_2015_12_a78
R. F. Shamoyan; N. M. Makhina. On continuous linear functionals in some weighted functional classes on~product domains. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 651-678. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a78/

[1] P. L. Duren, B. W. Romberg, A. L. Shields, “Linear functionals on spaces with $0 p 1$”, J. Reine and Angew. Math., 238 (1969), 32–60 | MR | Zbl

[2] C. Fefferman, “Characterizations of bounded mean oscillation”, Bull. Amer. Math. Soc., 77 (1971), 587–588 | DOI | MR | Zbl

[3] V. P. Zaharyuta, V. I. Yudovich, “A general view of a linear functional in $H^p$”, Russian Math. Sur., 19:2(116) (1964), 139–142 | MR

[4] A. P. Frazier, “The dual space of of the polydisc for $0 p 1$”, Duke Math. J., 39:2 (1972), 369–379 | DOI | MR | Zbl

[5] S. V. Shvedenko, “Hardy classes and related spaces analytic functions in the unit disk, unit ball and polydisc”, Results Science and Tech. Ser. Math., 23, VINITI, M., 1985, 3–124 | MR

[6] W. Rudin, Function theory in the polydisc, Benjamin, New York, 1969 | MR

[7] K. Zhu, Function theory in the unit ball, Springer Verlag, New York, 2005

[8] B. Li, M. Bownik, D. Yang, “Littlewood–Paley characterization and duality of weighted anisotropic product Hardy spaces”, Journal of Functional Analysis, 226:5 (2014), 2611–2661 | MR

[9] W. E. Gryc, T. Kemp, “Duality in Segal–Bargman spaces”, Journal of Functional Analysis, 261:6 (2011), 1591–1623 | DOI | MR | Zbl

[10] R. V. Bessonov, “Duality theorems for coinvariant subspaces of $H^1$”, Advances in Mathematics, 271 (2015), 62–90 | DOI | MR | Zbl

[11] I. Park, “Bounded projections, duality and representations on large mixed norm spaces”, Journal of Mathematical Analysis and Applications, 423 (2015), 1113–1128 | DOI | MR | Zbl

[12] A. Brudnyi, “$L^q$ norm inequalities for analytic functions revisited”, Journal of Approximation Theory, 179 (2014), 24–32 | DOI | MR | Zbl

[13] F. A. Shamoyan, “Diagonal mapping and some problems representation in anisotropic spaces of holomorphic in polydisc functions”, DAN ArmSSR, 85:1 (1987), 21–26 | MR

[14] F. A. Shamoyan, “Diagonal mapping and problems of representation of functions holomorphic in a polydisk in anisotropic spaces”, Sib. Math. J., 31:2 (1990), 197–215 | DOI | MR | Zbl

[15] E. Seneta, Varying functions correctly, Nauka, M., 1985 | MR

[16] F. A. Shamoyan, O. V. Yaroslavtseva, “Continuous projections, duality and the diagonal map in weighted spaces of holomorphic functions with mixed norm”, Zap. Nauchn. Sem. POMI, 247, 1997, 268–275 | MR | Zbl

[17] O. V. Yaroslavtseva, Some questions of representations in weighted spaces of holomorphic and the n-harmonic functions with mixed norm, Ph. D. Dissertation, Bryansk, 1999

[18] A. L. Shields, D. L. Williams, “Bounded projections, duality and multipliers in space of harmonic functions”, J. Reine Angew. Math., 299/300:8 (1978), 256–279 | MR | Zbl

[19] F. A. Shamoyan, N. A. Chasova, Bounded projectors and continuous linear functionals on the weighted spaces of analytic functions with mixed norm in a polydisc, Preprint, Bryansk State University, Bryansk, 2002

[20] N. A. Chasova, Integral representation, duality and Toeplitz operators in weighted anisotropic spaces of holomorphic functions with mixed norm in a polydisc, Ph. D. Dissertation, Bryansk, 2003

[21] S. Krantz, S.-Y. Li, “A note on Hardy spaces and functions of bounded mean oscillation on domains in $C^n$”, Michigan. Math. J., 41:1 (1994), 51–71 | DOI | MR | Zbl

[22] S. Krantz, S.-Y. Li, “Duality theorems for Hardy and Bergman spaces on convex domains of finite type in $C^n$”, Annales Inst. Fourier, 45:5 (1995), 1305–1327 | DOI | MR | Zbl

[23] S.-Y. Li, W. Luo, Analysis on Besov spaces. II: Embedding and duality theorems, Preprint, 2007 | MR

[24] A. Benedek, R. Panzone, “The space $L^p$ with mixed norm”, Duke Math. J., 28 (1961), 301–324 | DOI | MR | Zbl

[25] S. M. Nikolsky, Approximation of functions of several variables and imbedding theorems, Fizmatlit, M., 1977

[26] O. V. Besov, V. P. Ilin, S. M. Nikolsky, Integral representations of functions and imbedding theorems, v. 1, John Wiley and Sons, New York–Toronto–Ontario–London, 1978 ; v. 2, 1979 | Zbl | MR

[27] H. Triebel, Theory of function spaces, Mir, M., 1986 | MR | Zbl

[28] F. A. Shamoyan, E. V. Povprits, “Representation of continuous linear functionals in anisotropic weighted spaces of analytic functions in the polydisc with mixed norm”, Complex Variables and Elliptic Equations, 59:4 (2014), 462–483 | DOI | MR | Zbl

[29] E. V. Povprits, Characterization of the traces and the Cauchy transform continuous linear functionals in anisotropic weighted spaces of analytic functions with mixed norm, Ph. D. Dissertation, Bryansk, 2015

[30] Ch. Fefferman, E. Stein, “$H^p$ spaces of several variables”, Acta Math., 129:1 (1972), 137–193 | DOI | MR | Zbl

[31] I. E. Verbitsky, Embedding theorems for analytic function spaces with mixed norm, Preprint No 44, Institute of Geography and Geology, Chisinau, 1987

[32] V. S. Guliev, P. I. Lizorkin, “Classes of holomorphic and harmonic functions in polydisk in connection with their boundary values”, Proc. Math. Ins. RAN, 204, 1993, 137–159 | MR | Zbl

[33] J. Ortega, J. Fabrega, “Holomorphic Triebel–Lizorkin spaces”, J. Function. Anal., 151 (1997), 177–212 | DOI | MR | Zbl

[34] J. Ortega, J. Fabrega, “Hardy's inequality and embeddings in holomorhyic Triebel–Lizorkin spaces”, Ill. J. Math., 43:4 (1999), 733–751 | MR | Zbl

[35] R. F. Shamoyan, “Continuous functionals and multipliers of power series of a class of holomorphic functions in the polydisc”, Izvestia Vuzov, 2000, no. 7, 67–69 | MR | Zbl

[36] R. F. Shamoyan, “Multipliers of spaces such as Bergman space Hardy's polydisk”, Ukr. Math. J., 52:12 (2000), 1405–1415 | MR

[37] R. F. Shamoyan, “On the representation of continuous linear functionals on spaces of analytic functions of the Hardy–Sobolev type in the polydisc”, Ukr. Math. J., 55:5 (2003), 671–686 | DOI | MR | Zbl

[38] A. E. Djrbashian, F. A. Shamoyan, Topics in the theory of $A^p_{\alpha }$-spaces, BSB Teubner, Leipzig, 1988 | MR

[39] A. B. Aleksandrov, “Theory of functions in the ball”, Results of science and techn. Current problems in math. Fundam. directions, 8, VINITI, M., 1985, 115–186 | MR | Zbl

[40] R. F. Shamoyan, “On representations of linear bounded functionals in spaces of analytic functions in the polydisc”, VVMSH-2005: Math. Conference (Voroneg, 2005), 172–173

[41] O. E. Antonenkova, F. A. Shamoyan, “The Cauchy transform of linear continuous functionals and projections on the weighted spaces of analytic functions”, Sib. Math. J., 46:6 (2005), 1207–1234 | DOI | MR

[42] S. Gadbois, “Mixed norm generalization of Bergman spaces and duality”, Proc. Amer. Math. Soc., 104:4 (1988), 1171–1180 | DOI | MR | Zbl

[43] D. Gu, “Bergman projections and duality in weighted mixed-norm spaces of analytic functions”, Michigan. Math. J., 39:1 (1992), 71–84 | DOI | MR | Zbl

[44] R. F. Shamoyan, O. R. Mihic, “On some new analytic function spaces in polyball”, Palestine Journal of Mathematics, 4:1 (2015), 105–107 | MR

[45] P. H. Tatoyan, “Relations between the mean values of conjugate harmonic functions”, DAN ArmSSR, 49:1 (1969), 3–8 | MR

[46] A. M. Shihvatov, “Spaces of analytic functions in domain with angular point”, Mathematical Notes, 18:3 (1975), 411–420 | MR | Zbl

[47] A. M. Shihvatov, “On the $L^p$-space of functions analytic in a region with piecewise analytic boundary”, Mathematical Notes, 20:4 (1976), 537–548

[48] A. A. Solov'ev, “On continuity in $L^p$ the integral operator with kernel of Bergman”, Vestnik LGU, 19 (1978), 77–80 | MR | Zbl

[49] A. A. Solov'ev, “Estimates in $L^p$ for integral operators associated with the space of analytic and harmonic functions”, Siberian Mathematical Journal, 26:3 (1985), 168–191 | MR | Zbl

[50] J. Burbea, “The Bergman projection over plane regions”, Ark. Math., 18:1 (1980), 207–221 | DOI | MR | Zbl

[51] H. Hedenmalm, “The dual of Bergman space on simply connected domains”, J. d' Analyse Mathematique, 88 (2002), 311–335 | DOI | MR | Zbl

[52] N. M. Tkachenko (Makhina), F. A. Shamoyan, “The Hardy–Littlewood theorem and the operator of harmonic conjugate in some classes of simply connected domains with rectifiable boundary”, Journal of Mathematical Physics, Analysis, Geometry, 5:2 (2009), 192–210 | MR | Zbl

[53] N. M. Tkachenko (Makhina), “Continuous linear functionals in $L^p$-spaces of analytic functions”, Bull. Bryansk State University: Natural and exact science, 4 (2009), 100–105

[54] B. F. Sehba, “Bergman type operators in tube domains over symmetric cones”, Proc. Edinburg. Math. Society, 52:2 (2009), 529–544 | DOI | MR | Zbl

[55] R. F. Shamoyan, O. Mihic, “On traces of holomorphic functions in polyballs”, Applicable Analysis and Discrete Mathematics, 3 (2009), 42–48 | DOI | MR | Zbl

[56] D. Bekolle, A. Bonami, G. Garrigos, F. Ricci, B. Sehba, “Analytic Besov spaces and Hardy type inequalities in tube domains over symmetric cones”, J. Reine Angew. Math., 647 (2010), 25–56 | MR | Zbl

[57] R. F. Shamoyan, O. Mihic, “On traces of $Q_p$ type spaces and mixed norm analytic function spaces in polyballs”, Siauliau Math. Seminar, 5:13 (2010), 101–119 | MR | Zbl

[58] R. F. Shamoyan, E. V. Povprits, “Sharp theorems on Traces in analytic spaces in tube domains over symmetric cones”, Journal of Siberian Federal University. Mathematics and Physics, 6:4 (2013), 527–538

[59] K. Hahn, J. Mitchell, “Representation of linear functionals in $H^p$ spaces over bounded symmetric domains in $C^n$”, J. Math. Analysis and Applications, 56:2 (1976), 379–396 | DOI | MR | Zbl

[60] W. Chen, “Lipschitz spaces of holomorphic functions over bounded symmetric domains in $C^n$”, J. Math. Analysis and Applications, 81:1 (1981), 63–87 | DOI | MR | Zbl

[61] R. Coifman, R. Rochberg, “Representation theorems for holomorphic and harmonic functions in $L_p$”, Asterisque, 77, 1980, 11–66 | MR | Zbl