Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a78, author = {R. F. Shamoyan and N. M. Makhina}, title = {On continuous linear functionals in some weighted functional classes on~product domains}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {651--678}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a78/} }
TY - JOUR AU - R. F. Shamoyan AU - N. M. Makhina TI - On continuous linear functionals in some weighted functional classes on~product domains JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 651 EP - 678 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a78/ LA - en ID - SEMR_2015_12_a78 ER -
%0 Journal Article %A R. F. Shamoyan %A N. M. Makhina %T On continuous linear functionals in some weighted functional classes on~product domains %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2015 %P 651-678 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a78/ %G en %F SEMR_2015_12_a78
R. F. Shamoyan; N. M. Makhina. On continuous linear functionals in some weighted functional classes on~product domains. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 651-678. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a78/
[1] P. L. Duren, B. W. Romberg, A. L. Shields, “Linear functionals on spaces with $0 p 1$”, J. Reine and Angew. Math., 238 (1969), 32–60 | MR | Zbl
[2] C. Fefferman, “Characterizations of bounded mean oscillation”, Bull. Amer. Math. Soc., 77 (1971), 587–588 | DOI | MR | Zbl
[3] V. P. Zaharyuta, V. I. Yudovich, “A general view of a linear functional in $H^p$”, Russian Math. Sur., 19:2(116) (1964), 139–142 | MR
[4] A. P. Frazier, “The dual space of of the polydisc for $0 p 1$”, Duke Math. J., 39:2 (1972), 369–379 | DOI | MR | Zbl
[5] S. V. Shvedenko, “Hardy classes and related spaces analytic functions in the unit disk, unit ball and polydisc”, Results Science and Tech. Ser. Math., 23, VINITI, M., 1985, 3–124 | MR
[6] W. Rudin, Function theory in the polydisc, Benjamin, New York, 1969 | MR
[7] K. Zhu, Function theory in the unit ball, Springer Verlag, New York, 2005
[8] B. Li, M. Bownik, D. Yang, “Littlewood–Paley characterization and duality of weighted anisotropic product Hardy spaces”, Journal of Functional Analysis, 226:5 (2014), 2611–2661 | MR
[9] W. E. Gryc, T. Kemp, “Duality in Segal–Bargman spaces”, Journal of Functional Analysis, 261:6 (2011), 1591–1623 | DOI | MR | Zbl
[10] R. V. Bessonov, “Duality theorems for coinvariant subspaces of $H^1$”, Advances in Mathematics, 271 (2015), 62–90 | DOI | MR | Zbl
[11] I. Park, “Bounded projections, duality and representations on large mixed norm spaces”, Journal of Mathematical Analysis and Applications, 423 (2015), 1113–1128 | DOI | MR | Zbl
[12] A. Brudnyi, “$L^q$ norm inequalities for analytic functions revisited”, Journal of Approximation Theory, 179 (2014), 24–32 | DOI | MR | Zbl
[13] F. A. Shamoyan, “Diagonal mapping and some problems representation in anisotropic spaces of holomorphic in polydisc functions”, DAN ArmSSR, 85:1 (1987), 21–26 | MR
[14] F. A. Shamoyan, “Diagonal mapping and problems of representation of functions holomorphic in a polydisk in anisotropic spaces”, Sib. Math. J., 31:2 (1990), 197–215 | DOI | MR | Zbl
[15] E. Seneta, Varying functions correctly, Nauka, M., 1985 | MR
[16] F. A. Shamoyan, O. V. Yaroslavtseva, “Continuous projections, duality and the diagonal map in weighted spaces of holomorphic functions with mixed norm”, Zap. Nauchn. Sem. POMI, 247, 1997, 268–275 | MR | Zbl
[17] O. V. Yaroslavtseva, Some questions of representations in weighted spaces of holomorphic and the n-harmonic functions with mixed norm, Ph. D. Dissertation, Bryansk, 1999
[18] A. L. Shields, D. L. Williams, “Bounded projections, duality and multipliers in space of harmonic functions”, J. Reine Angew. Math., 299/300:8 (1978), 256–279 | MR | Zbl
[19] F. A. Shamoyan, N. A. Chasova, Bounded projectors and continuous linear functionals on the weighted spaces of analytic functions with mixed norm in a polydisc, Preprint, Bryansk State University, Bryansk, 2002
[20] N. A. Chasova, Integral representation, duality and Toeplitz operators in weighted anisotropic spaces of holomorphic functions with mixed norm in a polydisc, Ph. D. Dissertation, Bryansk, 2003
[21] S. Krantz, S.-Y. Li, “A note on Hardy spaces and functions of bounded mean oscillation on domains in $C^n$”, Michigan. Math. J., 41:1 (1994), 51–71 | DOI | MR | Zbl
[22] S. Krantz, S.-Y. Li, “Duality theorems for Hardy and Bergman spaces on convex domains of finite type in $C^n$”, Annales Inst. Fourier, 45:5 (1995), 1305–1327 | DOI | MR | Zbl
[23] S.-Y. Li, W. Luo, Analysis on Besov spaces. II: Embedding and duality theorems, Preprint, 2007 | MR
[24] A. Benedek, R. Panzone, “The space $L^p$ with mixed norm”, Duke Math. J., 28 (1961), 301–324 | DOI | MR | Zbl
[25] S. M. Nikolsky, Approximation of functions of several variables and imbedding theorems, Fizmatlit, M., 1977
[26] O. V. Besov, V. P. Ilin, S. M. Nikolsky, Integral representations of functions and imbedding theorems, v. 1, John Wiley and Sons, New York–Toronto–Ontario–London, 1978 ; v. 2, 1979 | Zbl | MR
[27] H. Triebel, Theory of function spaces, Mir, M., 1986 | MR | Zbl
[28] F. A. Shamoyan, E. V. Povprits, “Representation of continuous linear functionals in anisotropic weighted spaces of analytic functions in the polydisc with mixed norm”, Complex Variables and Elliptic Equations, 59:4 (2014), 462–483 | DOI | MR | Zbl
[29] E. V. Povprits, Characterization of the traces and the Cauchy transform continuous linear functionals in anisotropic weighted spaces of analytic functions with mixed norm, Ph. D. Dissertation, Bryansk, 2015
[30] Ch. Fefferman, E. Stein, “$H^p$ spaces of several variables”, Acta Math., 129:1 (1972), 137–193 | DOI | MR | Zbl
[31] I. E. Verbitsky, Embedding theorems for analytic function spaces with mixed norm, Preprint No 44, Institute of Geography and Geology, Chisinau, 1987
[32] V. S. Guliev, P. I. Lizorkin, “Classes of holomorphic and harmonic functions in polydisk in connection with their boundary values”, Proc. Math. Ins. RAN, 204, 1993, 137–159 | MR | Zbl
[33] J. Ortega, J. Fabrega, “Holomorphic Triebel–Lizorkin spaces”, J. Function. Anal., 151 (1997), 177–212 | DOI | MR | Zbl
[34] J. Ortega, J. Fabrega, “Hardy's inequality and embeddings in holomorhyic Triebel–Lizorkin spaces”, Ill. J. Math., 43:4 (1999), 733–751 | MR | Zbl
[35] R. F. Shamoyan, “Continuous functionals and multipliers of power series of a class of holomorphic functions in the polydisc”, Izvestia Vuzov, 2000, no. 7, 67–69 | MR | Zbl
[36] R. F. Shamoyan, “Multipliers of spaces such as Bergman space Hardy's polydisk”, Ukr. Math. J., 52:12 (2000), 1405–1415 | MR
[37] R. F. Shamoyan, “On the representation of continuous linear functionals on spaces of analytic functions of the Hardy–Sobolev type in the polydisc”, Ukr. Math. J., 55:5 (2003), 671–686 | DOI | MR | Zbl
[38] A. E. Djrbashian, F. A. Shamoyan, Topics in the theory of $A^p_{\alpha }$-spaces, BSB Teubner, Leipzig, 1988 | MR
[39] A. B. Aleksandrov, “Theory of functions in the ball”, Results of science and techn. Current problems in math. Fundam. directions, 8, VINITI, M., 1985, 115–186 | MR | Zbl
[40] R. F. Shamoyan, “On representations of linear bounded functionals in spaces of analytic functions in the polydisc”, VVMSH-2005: Math. Conference (Voroneg, 2005), 172–173
[41] O. E. Antonenkova, F. A. Shamoyan, “The Cauchy transform of linear continuous functionals and projections on the weighted spaces of analytic functions”, Sib. Math. J., 46:6 (2005), 1207–1234 | DOI | MR
[42] S. Gadbois, “Mixed norm generalization of Bergman spaces and duality”, Proc. Amer. Math. Soc., 104:4 (1988), 1171–1180 | DOI | MR | Zbl
[43] D. Gu, “Bergman projections and duality in weighted mixed-norm spaces of analytic functions”, Michigan. Math. J., 39:1 (1992), 71–84 | DOI | MR | Zbl
[44] R. F. Shamoyan, O. R. Mihic, “On some new analytic function spaces in polyball”, Palestine Journal of Mathematics, 4:1 (2015), 105–107 | MR
[45] P. H. Tatoyan, “Relations between the mean values of conjugate harmonic functions”, DAN ArmSSR, 49:1 (1969), 3–8 | MR
[46] A. M. Shihvatov, “Spaces of analytic functions in domain with angular point”, Mathematical Notes, 18:3 (1975), 411–420 | MR | Zbl
[47] A. M. Shihvatov, “On the $L^p$-space of functions analytic in a region with piecewise analytic boundary”, Mathematical Notes, 20:4 (1976), 537–548
[48] A. A. Solov'ev, “On continuity in $L^p$ the integral operator with kernel of Bergman”, Vestnik LGU, 19 (1978), 77–80 | MR | Zbl
[49] A. A. Solov'ev, “Estimates in $L^p$ for integral operators associated with the space of analytic and harmonic functions”, Siberian Mathematical Journal, 26:3 (1985), 168–191 | MR | Zbl
[50] J. Burbea, “The Bergman projection over plane regions”, Ark. Math., 18:1 (1980), 207–221 | DOI | MR | Zbl
[51] H. Hedenmalm, “The dual of Bergman space on simply connected domains”, J. d' Analyse Mathematique, 88 (2002), 311–335 | DOI | MR | Zbl
[52] N. M. Tkachenko (Makhina), F. A. Shamoyan, “The Hardy–Littlewood theorem and the operator of harmonic conjugate in some classes of simply connected domains with rectifiable boundary”, Journal of Mathematical Physics, Analysis, Geometry, 5:2 (2009), 192–210 | MR | Zbl
[53] N. M. Tkachenko (Makhina), “Continuous linear functionals in $L^p$-spaces of analytic functions”, Bull. Bryansk State University: Natural and exact science, 4 (2009), 100–105
[54] B. F. Sehba, “Bergman type operators in tube domains over symmetric cones”, Proc. Edinburg. Math. Society, 52:2 (2009), 529–544 | DOI | MR | Zbl
[55] R. F. Shamoyan, O. Mihic, “On traces of holomorphic functions in polyballs”, Applicable Analysis and Discrete Mathematics, 3 (2009), 42–48 | DOI | MR | Zbl
[56] D. Bekolle, A. Bonami, G. Garrigos, F. Ricci, B. Sehba, “Analytic Besov spaces and Hardy type inequalities in tube domains over symmetric cones”, J. Reine Angew. Math., 647 (2010), 25–56 | MR | Zbl
[57] R. F. Shamoyan, O. Mihic, “On traces of $Q_p$ type spaces and mixed norm analytic function spaces in polyballs”, Siauliau Math. Seminar, 5:13 (2010), 101–119 | MR | Zbl
[58] R. F. Shamoyan, E. V. Povprits, “Sharp theorems on Traces in analytic spaces in tube domains over symmetric cones”, Journal of Siberian Federal University. Mathematics and Physics, 6:4 (2013), 527–538
[59] K. Hahn, J. Mitchell, “Representation of linear functionals in $H^p$ spaces over bounded symmetric domains in $C^n$”, J. Math. Analysis and Applications, 56:2 (1976), 379–396 | DOI | MR | Zbl
[60] W. Chen, “Lipschitz spaces of holomorphic functions over bounded symmetric domains in $C^n$”, J. Math. Analysis and Applications, 81:1 (1981), 63–87 | DOI | MR | Zbl
[61] R. Coifman, R. Rochberg, “Representation theorems for holomorphic and harmonic functions in $L_p$”, Asterisque, 77, 1980, 11–66 | MR | Zbl