Mesoscopic dynamics of solid-liquid interfaces. A general mathematical model
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 884-900.

Voir la notice de l'article provenant de la source Math-Net.Ru

A number of chemical and physical processes occur at interfaces where solids meet liquids. Among them is heap and in-situ leaching, an important technological process to extract uranium, precious metals, nickel, copper and other compound. To understand the main peculiarities of these processes a general mathematical approach is developed and applied. Its key point is new conditions at the free (unknown) boundary between liquid and solid phases (pore space-solid skeleton). The developed model can be used to analyze the dependence of the dynamics of the free fluid-skeleton interface on the external parameters of the process, like temperature, pressure, reagent concentration and others. Therefore, the overall behavior of the process can be controlled either by the rate of chemical reaction on the free interface via reagent concentration or by the velocity at which dissolved substances are transported to or from the free surface. The special attention is paid to a plausible justification of upscaling from mesoscopic to macroscopic scales and its comparison with approaches usually used at the moment. Several examples illustrate the feasibility of the models.
Keywords: leaching, fluid flow.
Mots-clés : solid-liquid interface
@article{SEMR_2015_12_a77,
     author = {A. Meirmanov and N. Omarov and V. Tcheverda and A. Zhumaly},
     title = {Mesoscopic dynamics of solid-liquid interfaces. {A} general mathematical model},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {884--900},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a77/}
}
TY  - JOUR
AU  - A. Meirmanov
AU  - N. Omarov
AU  - V. Tcheverda
AU  - A. Zhumaly
TI  - Mesoscopic dynamics of solid-liquid interfaces. A general mathematical model
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 884
EP  - 900
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a77/
LA  - en
ID  - SEMR_2015_12_a77
ER  - 
%0 Journal Article
%A A. Meirmanov
%A N. Omarov
%A V. Tcheverda
%A A. Zhumaly
%T Mesoscopic dynamics of solid-liquid interfaces. A general mathematical model
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 884-900
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a77/
%G en
%F SEMR_2015_12_a77
A. Meirmanov; N. Omarov; V. Tcheverda; A. Zhumaly. Mesoscopic dynamics of solid-liquid interfaces. A general mathematical model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 884-900. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a77/

[1] F. Golfier, C. Zarcone, B. Bazin, R. Lenormand, D. Lasseux, M. Quintard, “On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium”, J. Fluid Mech., 457 (2002), 213–254 | Zbl

[2] K. Nitika, B. Vemuri, “Effect of medium heterogeneities on reactive dissolution of carbonates”, Chemical Engineering Science, 64 (2009), 376–390 | DOI

[3] C. E. Cohen, D. Ding, M. Quintard, B. Bazin, “From pore scale to wellbore scale: Impact of geometry on wormhole growth in carbonate acidization”, Chemical Engineering Science, 63 (2008), 3088–3099 | DOI

[4] M. K. R. Panga, M. Ziauddin, V. Balakotaiah, “Two-scale continuum model for simulation of wormholes incarbonate acidization”, A. I. Ch. E. Journal, 51 (2005), 3231–3248 | DOI

[5] R. Burridge, J. B. Keller, “Poroelasticity equations derived from microstructure”, Journal of Acoustic Society of America, 70:4 (1981), 1140–1146 | DOI | Zbl

[6] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 129, Springer-Verlag, New York, 1980 | MR

[7] D. Lukkassen, G. Nguetseng, P. Wall, “Two-scale convergence”, Int. J. Pure and Appl. Math., 2:1 (2002), 35–86 | MR | Zbl

[8] A. Meirmanov, Mathematical models for poroelastic flows, Atlantis Press, Paris, 2013 | MR

[9] A. Meirmanov, “Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media”, Siberian Mathematical Journal, 48:3 (2007), 519–538 | DOI | MR

[10] A. Meirmanov, “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl

[11] A. Meirmanov, “Double porosity models in incompressible poroelastic media”, Mathematical Models and Methods in Applied Sciences, 20:4 (2010), 635–659 | DOI | MR | Zbl

[12] A. Meirmanov, “The Muskat problem for a viscoelastic filtration”, Interfaces and Free Boundaries, 13:4 (2011), 463–484 | DOI | MR | Zbl

[13] A. Meirmanov, The Stefan Problem, Walter de Gruyter, Berlin–New York, 1992 | MR | Zbl

[14] L. E. Malvern, Introduction to Mechanics of a Continuum Medium, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969

[15] G. B. Whitham, Linear and nonlinear waves, Willey, 1999 | MR | Zbl