Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a77, author = {A. Meirmanov and N. Omarov and V. Tcheverda and A. Zhumaly}, title = {Mesoscopic dynamics of solid-liquid interfaces. {A} general mathematical model}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {884--900}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a77/} }
TY - JOUR AU - A. Meirmanov AU - N. Omarov AU - V. Tcheverda AU - A. Zhumaly TI - Mesoscopic dynamics of solid-liquid interfaces. A general mathematical model JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 884 EP - 900 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a77/ LA - en ID - SEMR_2015_12_a77 ER -
%0 Journal Article %A A. Meirmanov %A N. Omarov %A V. Tcheverda %A A. Zhumaly %T Mesoscopic dynamics of solid-liquid interfaces. A general mathematical model %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2015 %P 884-900 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a77/ %G en %F SEMR_2015_12_a77
A. Meirmanov; N. Omarov; V. Tcheverda; A. Zhumaly. Mesoscopic dynamics of solid-liquid interfaces. A general mathematical model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 884-900. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a77/
[1] F. Golfier, C. Zarcone, B. Bazin, R. Lenormand, D. Lasseux, M. Quintard, “On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium”, J. Fluid Mech., 457 (2002), 213–254 | Zbl
[2] K. Nitika, B. Vemuri, “Effect of medium heterogeneities on reactive dissolution of carbonates”, Chemical Engineering Science, 64 (2009), 376–390 | DOI
[3] C. E. Cohen, D. Ding, M. Quintard, B. Bazin, “From pore scale to wellbore scale: Impact of geometry on wormhole growth in carbonate acidization”, Chemical Engineering Science, 63 (2008), 3088–3099 | DOI
[4] M. K. R. Panga, M. Ziauddin, V. Balakotaiah, “Two-scale continuum model for simulation of wormholes incarbonate acidization”, A. I. Ch. E. Journal, 51 (2005), 3231–3248 | DOI
[5] R. Burridge, J. B. Keller, “Poroelasticity equations derived from microstructure”, Journal of Acoustic Society of America, 70:4 (1981), 1140–1146 | DOI | Zbl
[6] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 129, Springer-Verlag, New York, 1980 | MR
[7] D. Lukkassen, G. Nguetseng, P. Wall, “Two-scale convergence”, Int. J. Pure and Appl. Math., 2:1 (2002), 35–86 | MR | Zbl
[8] A. Meirmanov, Mathematical models for poroelastic flows, Atlantis Press, Paris, 2013 | MR
[9] A. Meirmanov, “Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media”, Siberian Mathematical Journal, 48:3 (2007), 519–538 | DOI | MR
[10] A. Meirmanov, “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl
[11] A. Meirmanov, “Double porosity models in incompressible poroelastic media”, Mathematical Models and Methods in Applied Sciences, 20:4 (2010), 635–659 | DOI | MR | Zbl
[12] A. Meirmanov, “The Muskat problem for a viscoelastic filtration”, Interfaces and Free Boundaries, 13:4 (2011), 463–484 | DOI | MR | Zbl
[13] A. Meirmanov, The Stefan Problem, Walter de Gruyter, Berlin–New York, 1992 | MR | Zbl
[14] L. E. Malvern, Introduction to Mechanics of a Continuum Medium, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969
[15] G. B. Whitham, Linear and nonlinear waves, Willey, 1999 | MR | Zbl