Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a73, author = {S. A. Solovyev and S. Tordeux}, title = {An efficient truncated {SVD} of large matrices based on the low-rank approximation for inverse geophysical problems}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {592--609}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a73/} }
TY - JOUR AU - S. A. Solovyev AU - S. Tordeux TI - An efficient truncated SVD of large matrices based on the low-rank approximation for inverse geophysical problems JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 592 EP - 609 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a73/ LA - en ID - SEMR_2015_12_a73 ER -
%0 Journal Article %A S. A. Solovyev %A S. Tordeux %T An efficient truncated SVD of large matrices based on the low-rank approximation for inverse geophysical problems %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2015 %P 592-609 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a73/ %G en %F SEMR_2015_12_a73
S. A. Solovyev; S. Tordeux. An efficient truncated SVD of large matrices based on the low-rank approximation for inverse geophysical problems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 592-609. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a73/
[1] N. S. Bakhvalov, Numerical Methods, Nauka, 1973 (in Russian) | MR
[2] S. Chaillat, M. Bonnet, “Recent advances on the fast multipole accelerated boundary element method for 3D time-harmonic elastodynamics”, Wave Motion, 50:7 (2013), 1090–1104 | DOI | MR
[3] J. Demmel, W. Kahan, “Accurate singular values of bidiagonal matrices”, SIAM Journal on Scientific and Statistical Computing, 11:5 (1990), 873–912 | DOI | MR | Zbl
[4] Z. Drmac, K. Veselic, “New fast and accurate Jacobi SVD algorithm, I”, SIAM J. Matrix Anal. Appl., 35:2 (2008), 1322–1342 | DOI | MR | Zbl
[5] A. Gumerov, R. Duraiswami, Fast multipole methods for the Helmholtz equation in three dimensions, Elsevier, Amsterdam, 2004
[6] N. Halko, P. Martinsson, J. A. Tropp, “Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions”, SIAM Review, 53:2 (2011), 217–288 | DOI | MR | Zbl
[7] I. Silvestrov, D. Neklyudov, C. Kostov, V. Tcheverda, “Full-waveform inversion for macro velocity model reconstruction in look-ahead offset VSP: numerical SVD-based analysis”, Geophysical Prospecting, 61:6 (2013), 1099–1113 | DOI
[8] G. Ming, S. C. Eisenstat, “Efficient algorithms for computing a strong rank-revealing QR factorization”, SIAM Journal on Scientific Computing, 17:4 (1996), 848–869 | DOI | MR | Zbl
[9] J. M. Ortega, W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Acad. Press, New York, 1970 | MR | Zbl
[10] P. P. M. De Rijk, “A one-sided Jacobi algorithm for computing the singular value decomposition on a vector computer”, SIAM J. Sci. Stat. Comp., 10 (1998), 359–371 | DOI | MR
[11] S. Rjasanow, “Adaptive cross approximation of dense matrices”, IABEM 2002, International Association for Boundary Element Methods (UT Austin, TX, USA, May 28–30, 2002)
[12] O. Schenk, K. Gartner, “On fast factorization pivoting methods for sparse symmetric indefinite systems”, Electronic Transactions on Numerical Analysis, 23 (2006), 158–179 | MR | Zbl
[13] I. Silvestrov, D. Neklyudov, M. Puckett, V. Tcheverda, “Resolution and stability analysis of offset VSP acquisition scenarios with applications to full-waveform inversion”, SEG Technical Program Expanded Abstracts 2012, 2012
[14] W. Menke, Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, Inc., New York, 1984 | MR