Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a72, author = {I. E. Svetov and A. P. Polyakova}, title = {Approximate solution of two-dimensional 2-tensor tomography problem using truncated singular value decomposition}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {480--499}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a72/} }
TY - JOUR AU - I. E. Svetov AU - A. P. Polyakova TI - Approximate solution of two-dimensional 2-tensor tomography problem using truncated singular value decomposition JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 480 EP - 499 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a72/ LA - ru ID - SEMR_2015_12_a72 ER -
%0 Journal Article %A I. E. Svetov %A A. P. Polyakova %T Approximate solution of two-dimensional 2-tensor tomography problem using truncated singular value decomposition %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2015 %P 480-499 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a72/ %G ru %F SEMR_2015_12_a72
I. E. Svetov; A. P. Polyakova. Approximate solution of two-dimensional 2-tensor tomography problem using truncated singular value decomposition. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 480-499. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a72/
[1] E. Yu. Derevtsov, A. P. Polyakova, “Solution of the Integral Geometry Problem for 2-Tensor Fields by the Singular Value Decomposition Method”, Journal of Mathematical Sciences, 202:1 (2014), 50–71 | DOI | MR
[2] A. K. Louis, “Orthogonal function series expansions and the null space of the Radon transform”, Society for industrial and applied mathematics, 15:3 (1984), 621–633 | MR | Zbl
[3] E. Yu. Derevtsov, A. V. Efimov, A. K. Louis, T. Schuster, “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography”, Journal of Inverse and Ill-Posed Problems, 19:4–5 (2011), 689–715 | MR | Zbl
[4] I. E. Svetov, A. P. Polyakova, “Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography”, Siberian Electronic Mathematical Reports, 10 (2013), 90–108 (in Russian) | MR
[5] E. Yu. Derevtsov, I. E. Svetov, Yu. S. Volkov, “Application of B-splines in emission 2D-tomography problem in a refracting medium”, Sib. J. Ind. Mat., 11:3 (2008), 45–60 (in Russian) | MR | Zbl
[6] E. Yu. Derevtsov, I. E. Svetov, Yu. S. Volkov, T. Schuster, “Numerical $B$-spline solution of emission and vector 2$D$-tomography problems for media with absorbtion and refraction”, 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering SIBIRCON-08, Conference proceedings (July 21–25, 2008), 212–217
[7] I. E. Svetov, E. Yu. Derevtsov, Yu. S. Volkov, T. Schuster, “A numerical solver based on B-splines for 2D vector field tomography in a refracting medium”, Mathematics and Computers in Simulation, 97 (2014), 207–223 | DOI | MR
[8] I. E. Svetov , A. P. Polyakova, “Reconstruction of 2-Tensor Fields, Given in a Unit Circle, by Their Ray Transform Based on LSM with $B$-Splines”, Numerical Analysis and Applications, 3:2 (2010), 151–164 | DOI | Zbl
[9] E. Yu. Derevtsov, “An approach of direct reconstruction of a solenoidal part in vector and tensor tomography problems”, J. Inverse Ill-Posed Problems, 13:3 (2005), 213–246 | DOI | MR | Zbl
[10] I. E. Svetov, “Properties of the Ray Transforms of Two-Dimensional 2-Tensor Fields Defined in the Unit Disk”, Journal of Applied and Industrial Mathematics, 8:1 (2014), 106–114 | DOI | MR
[11] F. Natterer, The Mathematics of Computerized Tomography, Wiley, Chichester, 1986 | MR | Zbl
[12] V. A. Tcheverda, V. I. Kostin, “$r$-Pseudoinverse for compact operators in Hilbert spaces: existence and stability”, Journal of Inverse and Ill-Posed Problems, 3:2 (1995), 131–148 | MR
[13] V. A. Tcheverda, V. I. Kostin, “$r$-Pseudoinverse for compact operator”, Proceedings of first international youth school-conference “Theory and numerical methods of inverse and ill-conditioned problems solving”, Part I, Siberian Electronic Mathematical Reports, 7, 2010, 258–282 (in Russian)
[14] V. A. Trenogin, Functional Analysis, Nauka, M., 1980 (in Russian) | MR | Zbl
[15] E. Yu. Derevtsov, A. G. Kleshchev, V. A. Sharafutdinov, “Numerical solution of the emission $2D$-tomography problem for a medium with absorption and refraction”, Journal of Inverse and Ill-Posed Problems, 7:1 (1999), 83–103 | DOI | MR | Zbl
[16] L. Schumaker, Spline Functions: Basic Theory, Wiley, New York, 1981 | MR | Zbl
[17] A. P. Polyakova, “About obtaining of analytical expressions for the images of $B$-splines for the Radon's transform and use of its in problems of scalar tomography”, Proceedings of first international youth school-conference “Theory and numerical methods of inverse and ill-conditioned problems solving”, Part I, Siberian Electronic Mathematical Reports, 7, 2010, 248–257 (in Russian)
[18] K. Enslein, A. Ralston, H. S. Wilf (eds.), Statistical Methods for Digital Computers, Wiley, New York, 1977 | MR | Zbl