Approximate solution of two-dimensional 2-tensor tomography problem using truncated singular value decomposition
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 480-499.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a numerical solution of reconstruction problem of 2-tensor field in a unit disk from its known values of the ray transforms. The algorithm is based on the method of truncated singular value decomposition. Numerical simulations demonstrate an efficiency of the proposed approach. In addition, we compare proposed algorithm with an algorithm based on the least squares method where we use a finite basis consisting of $B$-splines as basis functions.
Keywords: 2-tensor tomography, solenoidal field, potential field, approximation, ray transforms, truncated singular value decomposition, least squares method, $B$-splines.
Mots-clés : orthogonal polynomials
@article{SEMR_2015_12_a72,
     author = {I. E. Svetov and A. P. Polyakova},
     title = {Approximate solution of two-dimensional 2-tensor tomography problem using truncated singular value decomposition},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {480--499},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a72/}
}
TY  - JOUR
AU  - I. E. Svetov
AU  - A. P. Polyakova
TI  - Approximate solution of two-dimensional 2-tensor tomography problem using truncated singular value decomposition
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 480
EP  - 499
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a72/
LA  - ru
ID  - SEMR_2015_12_a72
ER  - 
%0 Journal Article
%A I. E. Svetov
%A A. P. Polyakova
%T Approximate solution of two-dimensional 2-tensor tomography problem using truncated singular value decomposition
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 480-499
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a72/
%G ru
%F SEMR_2015_12_a72
I. E. Svetov; A. P. Polyakova. Approximate solution of two-dimensional 2-tensor tomography problem using truncated singular value decomposition. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 480-499. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a72/

[1] E. Yu. Derevtsov, A. P. Polyakova, “Solution of the Integral Geometry Problem for 2-Tensor Fields by the Singular Value Decomposition Method”, Journal of Mathematical Sciences, 202:1 (2014), 50–71 | DOI | MR

[2] A. K. Louis, “Orthogonal function series expansions and the null space of the Radon transform”, Society for industrial and applied mathematics, 15:3 (1984), 621–633 | MR | Zbl

[3] E. Yu. Derevtsov, A. V. Efimov, A. K. Louis, T. Schuster, “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography”, Journal of Inverse and Ill-Posed Problems, 19:4–5 (2011), 689–715 | MR | Zbl

[4] I. E. Svetov, A. P. Polyakova, “Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography”, Siberian Electronic Mathematical Reports, 10 (2013), 90–108 (in Russian) | MR

[5] E. Yu. Derevtsov, I. E. Svetov, Yu. S. Volkov, “Application of B-splines in emission 2D-tomography problem in a refracting medium”, Sib. J. Ind. Mat., 11:3 (2008), 45–60 (in Russian) | MR | Zbl

[6] E. Yu. Derevtsov, I. E. Svetov, Yu. S. Volkov, T. Schuster, “Numerical $B$-spline solution of emission and vector 2$D$-tomography problems for media with absorbtion and refraction”, 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering SIBIRCON-08, Conference proceedings (July 21–25, 2008), 212–217

[7] I. E. Svetov, E. Yu. Derevtsov, Yu. S. Volkov, T. Schuster, “A numerical solver based on B-splines for 2D vector field tomography in a refracting medium”, Mathematics and Computers in Simulation, 97 (2014), 207–223 | DOI | MR

[8] I. E. Svetov , A. P. Polyakova, “Reconstruction of 2-Tensor Fields, Given in a Unit Circle, by Their Ray Transform Based on LSM with $B$-Splines”, Numerical Analysis and Applications, 3:2 (2010), 151–164 | DOI | Zbl

[9] E. Yu. Derevtsov, “An approach of direct reconstruction of a solenoidal part in vector and tensor tomography problems”, J. Inverse Ill-Posed Problems, 13:3 (2005), 213–246 | DOI | MR | Zbl

[10] I. E. Svetov, “Properties of the Ray Transforms of Two-Dimensional 2-Tensor Fields Defined in the Unit Disk”, Journal of Applied and Industrial Mathematics, 8:1 (2014), 106–114 | DOI | MR

[11] F. Natterer, The Mathematics of Computerized Tomography, Wiley, Chichester, 1986 | MR | Zbl

[12] V. A. Tcheverda, V. I. Kostin, “$r$-Pseudoinverse for compact operators in Hilbert spaces: existence and stability”, Journal of Inverse and Ill-Posed Problems, 3:2 (1995), 131–148 | MR

[13] V. A. Tcheverda, V. I. Kostin, “$r$-Pseudoinverse for compact operator”, Proceedings of first international youth school-conference “Theory and numerical methods of inverse and ill-conditioned problems solving”, Part I, Siberian Electronic Mathematical Reports, 7, 2010, 258–282 (in Russian)

[14] V. A. Trenogin, Functional Analysis, Nauka, M., 1980 (in Russian) | MR | Zbl

[15] E. Yu. Derevtsov, A. G. Kleshchev, V. A. Sharafutdinov, “Numerical solution of the emission $2D$-tomography problem for a medium with absorption and refraction”, Journal of Inverse and Ill-Posed Problems, 7:1 (1999), 83–103 | DOI | MR | Zbl

[16] L. Schumaker, Spline Functions: Basic Theory, Wiley, New York, 1981 | MR | Zbl

[17] A. P. Polyakova, “About obtaining of analytical expressions for the images of $B$-splines for the Radon's transform and use of its in problems of scalar tomography”, Proceedings of first international youth school-conference “Theory and numerical methods of inverse and ill-conditioned problems solving”, Part I, Siberian Electronic Mathematical Reports, 7, 2010, 248–257 (in Russian)

[18] K. Enslein, A. Ralston, H. S. Wilf (eds.), Statistical Methods for Digital Computers, Wiley, New York, 1977 | MR | Zbl