On Schur $3$-groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 223-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. An $S$-ring $\mathcal{A}$ over $G$ is a subring of the group ring $\mathbb{Z}G$ that has a linear basis associated with a special partition of $G$. About 40 years ago R. Pöschel suggested the problem which can be formulated as follows: for which group $G$ every $S$-ring $\mathcal{A}$ over it is schurian, i.e. the partition of $G$ corresponding to $\mathcal{A}$ consists of the orbits of the one point stabilizer of a permutation group in $Sym(G)$ that contains a regular subgroup isomorphic to $G$. The main result of the paper says that such $G$ can not be non-abelian $p$-group, where $p$ is an odd prime. In fact, modulo known results, it was sufficient to show that for every $n\geq3$ there exists a non-schurian $S$-ring over the group $M_{3^n}=\langle a,b\;|\:a^{3^{n-1}}=b^3=e,a^b=a^{3^{n-2}+1}\rangle$.
Keywords: Permutation groups, Cayley schemes, $S$-rings, Schur groups.
@article{SEMR_2015_12_a7,
     author = {G. K. Ryabov},
     title = {On {Schur} $3$-groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {223--231},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a7/}
}
TY  - JOUR
AU  - G. K. Ryabov
TI  - On Schur $3$-groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 223
EP  - 231
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a7/
LA  - en
ID  - SEMR_2015_12_a7
ER  - 
%0 Journal Article
%A G. K. Ryabov
%T On Schur $3$-groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 223-231
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a7/
%G en
%F SEMR_2015_12_a7
G. K. Ryabov. On Schur $3$-groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 223-231. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a7/

[1] S. Evdokimov, I. Kovács, I. Ponomarenko, “Characterization of cyclic Schur groups”, Algebra Anal., 25 (2013), 61–85 | MR

[2] S. Evdokimov, I. Kovács, I. Ponomarenko, “On schurity of finite abelian groups”, Comm. Algebra, 2013 (to appear) , arXiv: 1309.0989[math.GR]

[3] F. Fiedler, Enumeration of Cellular Algebras Applied to Graphs with Prescribed Symmetry, Masters thesis, Technische Universitat Dresden, 1998

[4] M. Klin, R. Pöschel, The isomorphism problem for circulant digraphs with $p^n$ vertices, Preprint P-34/80 Akad. der Wiss. der DDR, ZIMM, Berlin, 1980 | Zbl

[5] M. Muzychuk, I. Ponomarenko, “Schur rings”, European Journal of Combinatorics, 30 (2009), 1526–1539 | DOI | MR | Zbl

[6] M. Muzychuk, I. Ponomarenko, On Schur 2-groups, 2015, arXiv: 1503.02621[math.CO]

[7] I. Ponomarenko, A. Vasil'ev, “On non-abelian Schur groups”, J. Algebra Appl., 8 (2014), 1450055, 22 pp. | DOI | MR | Zbl

[8] R. Pöschel, “Untersuchungen von $S$-Ringen insbesondere im Gruppenring von $p$-Gruppen”, Math. Nachr., 60 (1974), 1–27 | DOI | MR | Zbl

[9] I. Schur, “Zur theorie der einfach transitiven Permutationgruppen”, S.-B. Preus Akad. Wiss. Phys.-Math. Kl., 1933, 598–623

[10] M. Ziv-Av, “Enumeration of Schur rings over small groups”, CASC Workshop 2014, LNCS, 8660, 2014, 491–500 | Zbl