Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a7, author = {G. K. Ryabov}, title = {On {Schur} $3$-groups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {223--231}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a7/} }
G. K. Ryabov. On Schur $3$-groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 223-231. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a7/
[1] S. Evdokimov, I. Kovács, I. Ponomarenko, “Characterization of cyclic Schur groups”, Algebra Anal., 25 (2013), 61–85 | MR
[2] S. Evdokimov, I. Kovács, I. Ponomarenko, “On schurity of finite abelian groups”, Comm. Algebra, 2013 (to appear) , arXiv: 1309.0989[math.GR]
[3] F. Fiedler, Enumeration of Cellular Algebras Applied to Graphs with Prescribed Symmetry, Masters thesis, Technische Universitat Dresden, 1998
[4] M. Klin, R. Pöschel, The isomorphism problem for circulant digraphs with $p^n$ vertices, Preprint P-34/80 Akad. der Wiss. der DDR, ZIMM, Berlin, 1980 | Zbl
[5] M. Muzychuk, I. Ponomarenko, “Schur rings”, European Journal of Combinatorics, 30 (2009), 1526–1539 | DOI | MR | Zbl
[6] M. Muzychuk, I. Ponomarenko, On Schur 2-groups, 2015, arXiv: 1503.02621[math.CO]
[7] I. Ponomarenko, A. Vasil'ev, “On non-abelian Schur groups”, J. Algebra Appl., 8 (2014), 1450055, 22 pp. | DOI | MR | Zbl
[8] R. Pöschel, “Untersuchungen von $S$-Ringen insbesondere im Gruppenring von $p$-Gruppen”, Math. Nachr., 60 (1974), 1–27 | DOI | MR | Zbl
[9] I. Schur, “Zur theorie der einfach transitiven Permutationgruppen”, S.-B. Preus Akad. Wiss. Phys.-Math. Kl., 1933, 598–623
[10] M. Ziv-Av, “Enumeration of Schur rings over small groups”, CASC Workshop 2014, LNCS, 8660, 2014, 491–500 | Zbl