Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 80-91

Voir la notice de l'article provenant de la source Math-Net.Ru

For a fractional diffusion equation with a fractional derivative in lowest terms with Robin boundary conditions, locally one-dimensional difference schemes are considered and their stability and convergence are proved.
Keywords: locally one-dimensional difference scheme, Caputo fractional derivative, maximum principle, stability and convergence of difference schemes, Robin boundary conditions.
Mots-clés : slow diffusion equation
@article{SEMR_2015_12_a68,
     author = {A. K. Bazzaev and I. D. Tsopanov},
     title = {Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {80--91},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a68/}
}
TY  - JOUR
AU  - A. K. Bazzaev
AU  - I. D. Tsopanov
TI  - Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 80
EP  - 91
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a68/
LA  - ru
ID  - SEMR_2015_12_a68
ER  - 
%0 Journal Article
%A A. K. Bazzaev
%A I. D. Tsopanov
%T Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 80-91
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a68/
%G ru
%F SEMR_2015_12_a68
A. K. Bazzaev; I. D. Tsopanov. Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 80-91. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a68/