Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a68, author = {A. K. Bazzaev and I. D. Tsopanov}, title = {Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {80--91}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a68/} }
TY - JOUR AU - A. K. Bazzaev AU - I. D. Tsopanov TI - Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 80 EP - 91 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a68/ LA - ru ID - SEMR_2015_12_a68 ER -
%0 Journal Article %A A. K. Bazzaev %A I. D. Tsopanov %T Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2015 %P 80-91 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a68/ %G ru %F SEMR_2015_12_a68
A. K. Bazzaev; I. D. Tsopanov. Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 80-91. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a68/
[1] V. E. Tarasov, Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka, Izhevskii institut kompyuternykh issledovanii, M.–Izhevsk, 2011, 568 pp.
[2] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 301 pp. | Zbl
[3] K. V. Chukbar, “Stokhasticheskii perenos i drobnye proizvodnye”, Zh. eksperim. i teor. fiz., 108:5(11) (1995), 1875–1884
[4] A. N. Olemskii, A. Ya. Flat, “Ispolzovanie kontseptsii fraktala v fizike kondensirovannoi sredy”, Uspekhi fiz. nauk., 163:12 (1993), 1–50 | DOI | MR
[5] V. L. Kobelev, Ya. L. Kobelev, E. P. Romanov, “Nedebaevskaya relaksatsiya i diffuziya vo fraktalnom prostranstve”, Dokl. RAN, 361:6 (1998), 755–758 | MR | Zbl
[6] V. M. Goloviznin, V. P. Kisilev, I. A. Korotkin, Chislennye metody resheniya uravneniya diffuzii s drobnoi proizvodnoi v odnomernom sluchae, Preprint IBRAE-2003-12, IBRAE RAN, M., 2003, 35 pp.
[7] V. M. Goloviznin, V. P. Kisilev, I. A. Korotkin, Yu. P. Yurkov, “Pryamye zadachi klassicheskogo perenosa radionuklidov v geologicheskikh formatsiyakh”, Izv. RAN. Energetika, 4 (2004), 121–130 | Zbl
[8] R. R. Nigmatullin, “Drobnyi integral i ego fizicheskaya interpretatsiya”, Teoreticheskaya i matem. fizika, 90:3 (1992), 354–368 | MR | Zbl
[9] A. K. Bazzaev, M. Kh. Shkhanukov-Lafishev, “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka s kraevymi usloviyami III roda”, ZhVM i MF, 50:7 (2010), 1200–1208 | MR | Zbl
[10] A. K. Bazzaev, “Tretya kraevaya zadacha dlya obobschennogo uravneniya parabolicheskogo tipa c drobnoi proizvodnoi po vremeni v mnogomernoi oblasti”, Vestnik VGU. Seriya: Fizika. Matematika, 2 (2010), 5–14
[11] A. A. Samarskii, Teoriya raznostnykh skhem, 3-e izd., ispr., Nauka, M., 1989 | MR
[12] M. M. Lafisheva, M. Kh. Shkhanukov-Lafishev, “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1878–1887 | MR | Zbl
[13] F. I. Taukenova, M. Kh. Shkhanukov-Lafishev, “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Zh. vychisl. matem. i matem. fiz., 46:10 (2006), 1871–1881 | MR
[14] A. A. Samarskii, A. V. Gulin, Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl