Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 80-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a fractional diffusion equation with a fractional derivative in lowest terms with Robin boundary conditions, locally one-dimensional difference schemes are considered and their stability and convergence are proved.
Keywords: locally one-dimensional difference scheme, Caputo fractional derivative, maximum principle, stability and convergence of difference schemes, Robin boundary conditions.
Mots-clés : slow diffusion equation
@article{SEMR_2015_12_a68,
     author = {A. K. Bazzaev and I. D. Tsopanov},
     title = {Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {80--91},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a68/}
}
TY  - JOUR
AU  - A. K. Bazzaev
AU  - I. D. Tsopanov
TI  - Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 80
EP  - 91
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a68/
LA  - ru
ID  - SEMR_2015_12_a68
ER  - 
%0 Journal Article
%A A. K. Bazzaev
%A I. D. Tsopanov
%T Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 80-91
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a68/
%G ru
%F SEMR_2015_12_a68
A. K. Bazzaev; I. D. Tsopanov. Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 80-91. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a68/

[1] V. E. Tarasov, Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka, Izhevskii institut kompyuternykh issledovanii, M.–Izhevsk, 2011, 568 pp.

[2] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 301 pp. | Zbl

[3] K. V. Chukbar, “Stokhasticheskii perenos i drobnye proizvodnye”, Zh. eksperim. i teor. fiz., 108:5(11) (1995), 1875–1884

[4] A. N. Olemskii, A. Ya. Flat, “Ispolzovanie kontseptsii fraktala v fizike kondensirovannoi sredy”, Uspekhi fiz. nauk., 163:12 (1993), 1–50 | DOI | MR

[5] V. L. Kobelev, Ya. L. Kobelev, E. P. Romanov, “Nedebaevskaya relaksatsiya i diffuziya vo fraktalnom prostranstve”, Dokl. RAN, 361:6 (1998), 755–758 | MR | Zbl

[6] V. M. Goloviznin, V. P. Kisilev, I. A. Korotkin, Chislennye metody resheniya uravneniya diffuzii s drobnoi proizvodnoi v odnomernom sluchae, Preprint IBRAE-2003-12, IBRAE RAN, M., 2003, 35 pp.

[7] V. M. Goloviznin, V. P. Kisilev, I. A. Korotkin, Yu. P. Yurkov, “Pryamye zadachi klassicheskogo perenosa radionuklidov v geologicheskikh formatsiyakh”, Izv. RAN. Energetika, 4 (2004), 121–130 | Zbl

[8] R. R. Nigmatullin, “Drobnyi integral i ego fizicheskaya interpretatsiya”, Teoreticheskaya i matem. fizika, 90:3 (1992), 354–368 | MR | Zbl

[9] A. K. Bazzaev, M. Kh. Shkhanukov-Lafishev, “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka s kraevymi usloviyami III roda”, ZhVM i MF, 50:7 (2010), 1200–1208 | MR | Zbl

[10] A. K. Bazzaev, “Tretya kraevaya zadacha dlya obobschennogo uravneniya parabolicheskogo tipa c drobnoi proizvodnoi po vremeni v mnogomernoi oblasti”, Vestnik VGU. Seriya: Fizika. Matematika, 2 (2010), 5–14

[11] A. A. Samarskii, Teoriya raznostnykh skhem, 3-e izd., ispr., Nauka, M., 1989 | MR

[12] M. M. Lafisheva, M. Kh. Shkhanukov-Lafishev, “Lokalno-odnomernaya skhema dlya uravneniya diffuzii drobnogo poryadka”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1878–1887 | MR | Zbl

[13] F. I. Taukenova, M. Kh. Shkhanukov-Lafishev, “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Zh. vychisl. matem. i matem. fiz., 46:10 (2006), 1871–1881 | MR

[14] A. A. Samarskii, A. V. Gulin, Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl