Linear approximation method preserving $k$-monotonicity
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 21-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the example of linear finite-dimensional approximation method that preserves $k$-monotonicity of approximated functions and uses the values of function at equidistant points on $[0,1]$.
Keywords: shape-preserving approximation, linear approximation, degree of approximation.
@article{SEMR_2015_12_a66,
     author = {D. I. Boytsov and S. P. Sidorov},
     title = {Linear approximation method preserving $k$-monotonicity},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {21--27},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a66/}
}
TY  - JOUR
AU  - D. I. Boytsov
AU  - S. P. Sidorov
TI  - Linear approximation method preserving $k$-monotonicity
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 21
EP  - 27
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a66/
LA  - en
ID  - SEMR_2015_12_a66
ER  - 
%0 Journal Article
%A D. I. Boytsov
%A S. P. Sidorov
%T Linear approximation method preserving $k$-monotonicity
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 21-27
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a66/
%G en
%F SEMR_2015_12_a66
D. I. Boytsov; S. P. Sidorov. Linear approximation method preserving $k$-monotonicity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 21-27. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a66/

[1] B. Barnabas, L. Coroianu, Sorin G. Gal, “Approximation and shape preserving properties of the Bernstein operator of max-product kind”, International Journal of Mathematics and Mathematical Sciences, 2009 (2009), 590589, 26 pp. | MR | Zbl

[2] D. Cárdenas-Morales, P. Garrancho, I. Raşa, “Bernstein-type operators which preserve polynomials”, Computers and Mathematics with Applications, 62 (2011), 158–163 | DOI | MR | Zbl

[3] D. Cárdenas-Morales, F. J. Muñoz-Delgado, “Improving certain Bernstein-type approximation processes”, Mathematics and Computers in Simulation, 77 (2008), 170–178 | DOI | MR

[4] D. Cárdenas-Morales, F. J. Muñoz-Delgado, P. Garrancho, “Shape preserving approximation by Bernstein-type operators which fix polynomials”, Applied Mathematics and Computation, 182 (2006), 1615–1622 | DOI | MR

[5] M. S. Floater, “Error formulas for divided difference expansions and numerical differentiation”, J. Approx. Theory, 122 (2003), 1–9 | DOI | MR | Zbl

[6] M. S. Floater, “On the convergence of derivatives of Bernstein approximation”, J. Approx. Theory, 134 (2005), 130–135 | DOI | MR | Zbl

[7] S. G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, Springer, 2008 | MR

[8] H. H. Gonska, “Quantitative Korovkin type theorems on simultaneous approximation”, Mathematische Zeitschrift, 186:3 (1984), 419–433 | DOI | MR | Zbl

[9] S. Karlin, W. Stadden, Tchebycheff systems: With applications in analysis and statistics, v. XV, Pure and applied mathematics, Interscience Publishers John Wiley Sons, New York, 1966 | MR | Zbl

[10] L. M. Kocić, G. V. Milovanović, “Shape preserving approximations by polynomials and splines”, Computers Mathematics with Applications, 33:11 (1997), 59–97 | DOI | MR | Zbl

[11] K. Kopotun, A. Shadrin, “On $k$-monotone approximation by free knot splines”, SIAM J. Math. Anal., 34 (2003), 901–924 | DOI | MR | Zbl

[12] B. I. Kvasov, Methods of shape preserving spline approximation, World Scientific Publ. Co. Pte. Ltd., Singapore, 2000 | MR | Zbl

[13] B. I. Kvasov, “Monotone and convex interpolation by weighted cubic splines”, Computational Mathematics and Mathematical Physics, 53:10 (2013), 1428–1439 | DOI | MR | Zbl

[14] K. A. Kopotun, D. Leviatan, A. Prymak, I. A. Shevchuk, “Uniform and Pointwise Shape Preserving Approximation by Algebraic Polynomials”, Surveys in Approximation Theory, 6 (2011), 24–74 | MR | Zbl

[15] F. J. Muñoz-Delgado, V. Ramírez-González, D. Cárdenas-Morales, “Qualitative Korovkin-type results on conservative approximation”, J. Approx. Theory, 94 (1998), 144–159 | DOI | MR

[16] J. Pál, “Approksimation of konvekse funktioner ved konvekse polynomier”, Mat. Tidsskrift, B (1925), 60–65 | Zbl

[17] T. Popoviciu, About the Best Polynomial Approximation of Continuous Functions, v. III, Mathematical Monography, Sect. Mat. Univ. Cluj, 1937 (In Romanian) | Zbl

[18] R. Pǎltǎnea, “A generalization of Kantorovich operators and a shape-preserving property of Bernstein operators”, Bulletin of the Transilvania University of Brasov, Series III, 5(54):2 (2012), 65–68 | MR

[19] S. P. Sidorov, “On the order of approximation by linear shape-preserving operators of finite rank”, East J. on Approx., 7:1 (2001), 1–8 | MR | Zbl

[20] S. P. Sidorov, “Negative property of shape preserving finite-dimensional linear operators”, Appl. Math. Lett., 16:2 (2003), 257–261 | DOI | MR | Zbl

[21] J. Tzimbalario, “Approximation of functions by convexity preserving continuous linear operators”, Proc. Amer. Math. Soc., 53 (1975), 129–132 | DOI | MR | Zbl