Linear approximation method preserving $k$-monotonicity
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 21-27

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the example of linear finite-dimensional approximation method that preserves $k$-monotonicity of approximated functions and uses the values of function at equidistant points on $[0,1]$.
Keywords: shape-preserving approximation, linear approximation, degree of approximation.
@article{SEMR_2015_12_a66,
     author = {D. I. Boytsov and S. P. Sidorov},
     title = {Linear approximation method preserving $k$-monotonicity},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {21--27},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a66/}
}
TY  - JOUR
AU  - D. I. Boytsov
AU  - S. P. Sidorov
TI  - Linear approximation method preserving $k$-monotonicity
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 21
EP  - 27
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a66/
LA  - en
ID  - SEMR_2015_12_a66
ER  - 
%0 Journal Article
%A D. I. Boytsov
%A S. P. Sidorov
%T Linear approximation method preserving $k$-monotonicity
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 21-27
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a66/
%G en
%F SEMR_2015_12_a66
D. I. Boytsov; S. P. Sidorov. Linear approximation method preserving $k$-monotonicity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 21-27. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a66/