Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a65, author = {E. Yu. Derevtsov}, title = {A difference approximation of the covariant derivative and other operators and geometric objects given in a {Riemannian} domain}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {973--990}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a65/} }
TY - JOUR AU - E. Yu. Derevtsov TI - A difference approximation of the covariant derivative and other operators and geometric objects given in a Riemannian domain JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 973 EP - 990 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a65/ LA - ru ID - SEMR_2015_12_a65 ER -
%0 Journal Article %A E. Yu. Derevtsov %T A difference approximation of the covariant derivative and other operators and geometric objects given in a Riemannian domain %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2015 %P 973-990 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a65/ %G ru %F SEMR_2015_12_a65
E. Yu. Derevtsov. A difference approximation of the covariant derivative and other operators and geometric objects given in a Riemannian domain. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 973-990. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a65/
[1] A. N. Konovalov, “Numerical methods for static problems of elasticity”, Sib. Math. Journal, 36:3 (1995), 491–505 | DOI | MR | Zbl
[2] M. M. Karchevsky, S. N. Voloshanskaia, “On approximation of the strain tensor in curvilinear coordinates. The difference scheme for the problem on the equilibrum of elastic cylinder”, Izv. vuzov: Mathematics, 1977, no. 10, 70–80 (in Russian) | MR
[3] V. N. Timashev, “An approximation of differential operators in curvilinear coordinates”, Prikladnuie problemu prochnosti i plastichnosti, 6, Gorkyi, 1977, 47–54 (in Russian)
[4] N. V. Tsurikov, “On approximtion of covariant derivatives of vectors and tensors in arbitrary curvilinear coordinate system”, Variatsionnuie metodui v zadachakh chislennogo analiza, VC SO AN SSSR, Novosibirsk, 1986, 150–156 (in Russian) | Zbl
[5] V. A. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, 1994 | MR
[6] N. E. Kochin, Vector Calculus and Fundamentals of Tensor Calculus, Gos. Tech.-Teor. Izd., L.–M., 1934 (in Russian)
[7] H. Weyl, “The method of orthogonal projection in potential theory”, Duke Math. J., 7 (1940), 411–444 | DOI | MR
[8] E. Yu. Derevtsov, V. V. Pikalov, “Reconstruction of vector fields and their singularities from ray transforms”, Numerical Analysis and Applications, 4:1 (2011), 21–35 | DOI | Zbl
[9] E. Yu. Derevtsov, “Some problems of non-scalar tomography”, Proceedings of the First International Cientific Conference and Young Scientists School “Theory and Computational Methods for Inverse and Ill-posed Problems”, Part I, Siberian Electronic Mathematical Reports, 7, 2010, 81–111 (in Russian)
[10] E. Yu. Derevtsov, Tomography of complecated media: models, methods, algorithms, v. II, Models of vector and tensor tomography, GASU, Gorno-Altaisk, 2010 (in Russian)
[11] M. A. Bezuglova, E. Yu. Derevtsov, S. B. Sorokin, “The reconstruction of a vector field by finite difference methods”, J. Inverse Ill-posed Problems, 10:2 (2002), 125–154 | DOI | MR | Zbl
[12] E. Yu. Derevtsov, “An approach to direct reconstruction of a solenoidal part in vector and tensor tomography problems”, J. Inverse Ill-Posed Problems, 13:3–6 (2005), 213–246 | DOI | MR | Zbl
[13] A. A. Samarsky, V. B. Andreev, Difference methods for elliptic equations, Nauka, M., 1976 (in Russian) | MR
[14] K. Jano, S. Bochner, Curvature and Betti numbers, Princeton University Press, Princeton, New Jersey, 1953 | MR
[15] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern Geometry. Methods and Applications, v. 1, GTM, 93, Springer-Verlag, 1984 ; v. 2, GTM, 104, 1985 | MR | Zbl | MR | Zbl