The local stability of a population dynamics model in conditions of deleterious effects
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 610-624
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the local stability of an integro-differential system with aftereffect, which is a model of dynamics of a population in conditions of deleterious effects.
Keywords:
system of linear functional differential equations, exponential stability, uniform stability, aftereffect, population dynamics.
@article{SEMR_2015_12_a63,
author = {A. S. Balandin and T. L. Sabatulina},
title = {The local stability of a population dynamics model in conditions of deleterious effects},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {610--624},
publisher = {mathdoc},
volume = {12},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a63/}
}
TY - JOUR AU - A. S. Balandin AU - T. L. Sabatulina TI - The local stability of a population dynamics model in conditions of deleterious effects JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 610 EP - 624 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a63/ LA - ru ID - SEMR_2015_12_a63 ER -
%0 Journal Article %A A. S. Balandin %A T. L. Sabatulina %T The local stability of a population dynamics model in conditions of deleterious effects %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2015 %P 610-624 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a63/ %G ru %F SEMR_2015_12_a63
A. S. Balandin; T. L. Sabatulina. The local stability of a population dynamics model in conditions of deleterious effects. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 610-624. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a63/