Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a63, author = {A. S. Balandin and T. L. Sabatulina}, title = {The local stability of a population dynamics model in conditions of deleterious effects}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {610--624}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a63/} }
TY - JOUR AU - A. S. Balandin AU - T. L. Sabatulina TI - The local stability of a population dynamics model in conditions of deleterious effects JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 610 EP - 624 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a63/ LA - ru ID - SEMR_2015_12_a63 ER -
%0 Journal Article %A A. S. Balandin %A T. L. Sabatulina %T The local stability of a population dynamics model in conditions of deleterious effects %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2015 %P 610-624 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a63/ %G ru %F SEMR_2015_12_a63
A. S. Balandin; T. L. Sabatulina. The local stability of a population dynamics model in conditions of deleterious effects. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 610-624. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a63/
[1] A. N. Pichugina, “Integrodifferentsialnaya model populyatsii, podverzhennoi vozdeistviyu vrednykh veschestv”, Sib. zhurnal ind. matem., 7:4(20) (2004), 130–140 | MR | Zbl
[2] N. V. Pertsev, “Issledovanie reshenii inegralnoi modeli Lotki–Volterra”, Sib. zhurnal ind. matem., 2:2(4) (1999), 153–167 | MR | Zbl
[3] R. O. Karelina, N. V. Pertsev, “Postroenie dvustoronnikh otsenok dlya reshenii nekotorykh sistem differentsialnykh uravnenii s posledeistviem”, Sib. zhurnal ind. matem., 8:4(24) (2005), 60–72 | MR | Zbl
[4] N. V. Pertsev, “Primenenie monotonnogo metoda i $M$-matrits k analizu povedeniya reshenii nekotorykh modelei biologicheskikh protsessov”, Sib. zhurnal ind. matem., 5:4(12) (2002), 110–122 | MR | Zbl
[5] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR
[6] R. Bellman, K. Kuk, Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR
[7] V. I. Zubov, “K teorii lineinykh statsionarnykh sistem s zapazdyvayuschim argumentom”, Izv. vuzov. Matematika, 1958, no. 6, 86–95 | MR | Zbl
[8] T. Sabatulina, V. Malygina, “On positiveness of the fundamental solution for a linear autonomous differential equation with distributed delay”, Electron. J. Qual. Theory Differ. Equ., 61 (2014), 1–16 | DOI | MR
[9] M. M. Postnikov, Ustoichivye mnogochleny, Editorial URSS, M., 2004 | MR
[10] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR
[11] N. V. Pertsev, G. E. Tsaregorodtseva, A. N. Pichugina, “Analiz ustoichivosti polozhenii ravnovesiya odnoi modeli populyatsionnoi dinamiki”, Vestnik Omskogo universiteta, 2 (2009), 50–53 | Zbl