The local stability of a population dynamics model in conditions of deleterious effects
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 610-624.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the local stability of an integro-differential system with aftereffect, which is a model of dynamics of a population in conditions of deleterious effects.
Keywords: system of linear functional differential equations, exponential stability, uniform stability, aftereffect, population dynamics.
@article{SEMR_2015_12_a63,
     author = {A. S. Balandin and T. L. Sabatulina},
     title = {The local stability of a population dynamics model in conditions of deleterious effects},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {610--624},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a63/}
}
TY  - JOUR
AU  - A. S. Balandin
AU  - T. L. Sabatulina
TI  - The local stability of a population dynamics model in conditions of deleterious effects
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 610
EP  - 624
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a63/
LA  - ru
ID  - SEMR_2015_12_a63
ER  - 
%0 Journal Article
%A A. S. Balandin
%A T. L. Sabatulina
%T The local stability of a population dynamics model in conditions of deleterious effects
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 610-624
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a63/
%G ru
%F SEMR_2015_12_a63
A. S. Balandin; T. L. Sabatulina. The local stability of a population dynamics model in conditions of deleterious effects. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 610-624. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a63/

[1] A. N. Pichugina, “Integrodifferentsialnaya model populyatsii, podverzhennoi vozdeistviyu vrednykh veschestv”, Sib. zhurnal ind. matem., 7:4(20) (2004), 130–140 | MR | Zbl

[2] N. V. Pertsev, “Issledovanie reshenii inegralnoi modeli Lotki–Volterra”, Sib. zhurnal ind. matem., 2:2(4) (1999), 153–167 | MR | Zbl

[3] R. O. Karelina, N. V. Pertsev, “Postroenie dvustoronnikh otsenok dlya reshenii nekotorykh sistem differentsialnykh uravnenii s posledeistviem”, Sib. zhurnal ind. matem., 8:4(24) (2005), 60–72 | MR | Zbl

[4] N. V. Pertsev, “Primenenie monotonnogo metoda i $M$-matrits k analizu povedeniya reshenii nekotorykh modelei biologicheskikh protsessov”, Sib. zhurnal ind. matem., 5:4(12) (2002), 110–122 | MR | Zbl

[5] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[6] R. Bellman, K. Kuk, Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR

[7] V. I. Zubov, “K teorii lineinykh statsionarnykh sistem s zapazdyvayuschim argumentom”, Izv. vuzov. Matematika, 1958, no. 6, 86–95 | MR | Zbl

[8] T. Sabatulina, V. Malygina, “On positiveness of the fundamental solution for a linear autonomous differential equation with distributed delay”, Electron. J. Qual. Theory Differ. Equ., 61 (2014), 1–16 | DOI | MR

[9] M. M. Postnikov, Ustoichivye mnogochleny, Editorial URSS, M., 2004 | MR

[10] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR

[11] N. V. Pertsev, G. E. Tsaregorodtseva, A. N. Pichugina, “Analiz ustoichivosti polozhenii ravnovesiya odnoi modeli populyatsionnoi dinamiki”, Vestnik Omskogo universiteta, 2 (2009), 50–53 | Zbl