Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a61, author = {R. V. Brizitskii and Zh. Yu. Saritskaya}, title = {Boundary value and extremal problems for the nonlinear convection{\textendash}diffusion{\textendash}reaction equation}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {447--456}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a61/} }
TY - JOUR AU - R. V. Brizitskii AU - Zh. Yu. Saritskaya TI - Boundary value and extremal problems for the nonlinear convection–diffusion–reaction equation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 447 EP - 456 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a61/ LA - ru ID - SEMR_2015_12_a61 ER -
%0 Journal Article %A R. V. Brizitskii %A Zh. Yu. Saritskaya %T Boundary value and extremal problems for the nonlinear convection–diffusion–reaction equation %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2015 %P 447-456 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a61/ %G ru %F SEMR_2015_12_a61
R. V. Brizitskii; Zh. Yu. Saritskaya. Boundary value and extremal problems for the nonlinear convection–diffusion–reaction equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 447-456. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a61/
[1] V. Becker, M. Braack, B. Vexler, “Numerical parameter estimation for chemical models in multidimensional reactive flows”, Combust. Theory Modelling, 8 (2004), 661–682 | DOI | MR | Zbl
[2] G. V. Alekseev, E. A. Adomavichus, “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluid”, J. Inverse Ill-Posed Probl., 9:5 (2001), 435–468 | DOI | MR | Zbl
[3] G. V. Alekseev, “Inverse extremal problems for stationary equations in mass transfer theory”, Comp. Math. Math. Phys., 42:3 (2002), 363–376 | MR | Zbl
[4] G. V. Alekseev, O. V. Soboleva, D. A. Tereshko, “Identification problems for a steady-state model of mass transfer”, J. Appl. Mech. Tech. Phys., 49:4 (2008), 537–547 | DOI | MR | Zbl
[5] G. V. Alekseev, D. A. Tereshko, “Two parameter extremum problems of boundary control for stationary thermal convection equations”, Comp. Math. Math. Phys., 51:9 (2011), 1539–1557 | DOI | MR | Zbl
[6] G. V. Alekseev, I. S. Vakhitov, O. V. Soboleva, “Stability estimates in identification problems for the convection-diffusion-reaction equation”, Comp. Math. Math. Phys., 52:12 (2012), 1635–1649 | DOI | MR | Zbl
[7] G. V. Alekseev, R. V. Brizitskii, “Stability estimates for solutions of control problems for the Maxwell equations with mixed boundary conditions”, Differential Equations, 49:8 (2013), 963–974 | DOI | MR | Zbl
[8] G. V. Alekseev, Optimization in stationary problems of heat and mass transfer and magnetohydrodynamics, Nauchnyi Mir, Moscow, 2010
[9] A. V. Fursikov, Optimal control of distributed systems. Theory and aplications, American Mathematical Society, 2000 | MR
[10] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409 (2014), 808–815 | DOI | MR | Zbl
[11] A. E. Kovtanyuk, A. Yu. Chebotarev, “Steady-state problem of complex heat transfer”, Comp. Math. Math. Phys., 54:4 (2014), 719–726 | DOI | MR | Zbl
[12] P. Grisvard, Elliptic problems in nonsmooth domains, Monograph and studies in mathematics, Pitman, London, 1985 | MR | Zbl
[13] A. D. Ioffe, V. M. Tikhomirov, Theory of extremal problems, Elsevier, Amsterdam, 1978 | MR
[14] J. Cea, Lectures on Optimization. Theory and Algorithms, Springer-Verlag, Berlin–Heidelberg–New York, 1978 | MR | Zbl