Boundary value and extremal problems for the nonlinear convection–diffusion–reaction equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 447-456.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the boundary value and optimal control problems for stationary nonlinear convection-diffusion-reaction equation, wherein reaction coefficient depends on concentration of substance. The general form of nonlinear reaction coefficient’s dependence on concentration of substance is offered. Solvability of the boundary value and control problems for convection-diffusion-reaction equation is proved. Nonlocal optimality system for the quadratic nonlinearity is obtained, and local uniqueness of extremal problem’s solution for a particular cost functional is proved with the help of optimality system.
Mots-clés : convection-diffusion-reaction equation
Keywords: control problem, optimality system, local uniqueness.
@article{SEMR_2015_12_a61,
     author = {R. V. Brizitskii and Zh. Yu. Saritskaya},
     title = {Boundary value and extremal problems for the nonlinear convection{\textendash}diffusion{\textendash}reaction equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {447--456},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a61/}
}
TY  - JOUR
AU  - R. V. Brizitskii
AU  - Zh. Yu. Saritskaya
TI  - Boundary value and extremal problems for the nonlinear convection–diffusion–reaction equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 447
EP  - 456
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a61/
LA  - ru
ID  - SEMR_2015_12_a61
ER  - 
%0 Journal Article
%A R. V. Brizitskii
%A Zh. Yu. Saritskaya
%T Boundary value and extremal problems for the nonlinear convection–diffusion–reaction equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 447-456
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a61/
%G ru
%F SEMR_2015_12_a61
R. V. Brizitskii; Zh. Yu. Saritskaya. Boundary value and extremal problems for the nonlinear convection–diffusion–reaction equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 447-456. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a61/

[1] V. Becker, M. Braack, B. Vexler, “Numerical parameter estimation for chemical models in multidimensional reactive flows”, Combust. Theory Modelling, 8 (2004), 661–682 | DOI | MR | Zbl

[2] G. V. Alekseev, E. A. Adomavichus, “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluid”, J. Inverse Ill-Posed Probl., 9:5 (2001), 435–468 | DOI | MR | Zbl

[3] G. V. Alekseev, “Inverse extremal problems for stationary equations in mass transfer theory”, Comp. Math. Math. Phys., 42:3 (2002), 363–376 | MR | Zbl

[4] G. V. Alekseev, O. V. Soboleva, D. A. Tereshko, “Identification problems for a steady-state model of mass transfer”, J. Appl. Mech. Tech. Phys., 49:4 (2008), 537–547 | DOI | MR | Zbl

[5] G. V. Alekseev, D. A. Tereshko, “Two parameter extremum problems of boundary control for stationary thermal convection equations”, Comp. Math. Math. Phys., 51:9 (2011), 1539–1557 | DOI | MR | Zbl

[6] G. V. Alekseev, I. S. Vakhitov, O. V. Soboleva, “Stability estimates in identification problems for the convection-diffusion-reaction equation”, Comp. Math. Math. Phys., 52:12 (2012), 1635–1649 | DOI | MR | Zbl

[7] G. V. Alekseev, R. V. Brizitskii, “Stability estimates for solutions of control problems for the Maxwell equations with mixed boundary conditions”, Differential Equations, 49:8 (2013), 963–974 | DOI | MR | Zbl

[8] G. V. Alekseev, Optimization in stationary problems of heat and mass transfer and magnetohydrodynamics, Nauchnyi Mir, Moscow, 2010

[9] A. V. Fursikov, Optimal control of distributed systems. Theory and aplications, American Mathematical Society, 2000 | MR

[10] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409 (2014), 808–815 | DOI | MR | Zbl

[11] A. E. Kovtanyuk, A. Yu. Chebotarev, “Steady-state problem of complex heat transfer”, Comp. Math. Math. Phys., 54:4 (2014), 719–726 | DOI | MR | Zbl

[12] P. Grisvard, Elliptic problems in nonsmooth domains, Monograph and studies in mathematics, Pitman, London, 1985 | MR | Zbl

[13] A. D. Ioffe, V. M. Tikhomirov, Theory of extremal problems, Elsevier, Amsterdam, 1978 | MR

[14] J. Cea, Lectures on Optimization. Theory and Algorithms, Springer-Verlag, Berlin–Heidelberg–New York, 1978 | MR | Zbl