Optimal control of tilt angles in equilibrium problems for the Timoshenko plate with a oblique crack
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 300-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an equilibrium problem of an elastic plate with a flat oblique crack (cut). Nonpenetration conditions on the crack faces are given in the form of inequalities. We investigate the dependence of the solution and energy functional with respect to variations of the crack's tilt angle. The existence of the solution to the optimal control problem is proved. For that problem the cost functional is defined by derivatives of a energy functional along the crack perturbation parameter and the crack's tilt angle is chosen as the control function.
Mots-clés : oblique crack
Keywords: optimal control, plate, variational inequality.
@article{SEMR_2015_12_a60,
     author = {N. P. Lazarev and N. V. Neustroeva and N. A. Nikolaeva},
     title = {Optimal control of tilt angles in equilibrium problems for the {Timoshenko} plate with a oblique crack},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {300--308},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a60/}
}
TY  - JOUR
AU  - N. P. Lazarev
AU  - N. V. Neustroeva
AU  - N. A. Nikolaeva
TI  - Optimal control of tilt angles in equilibrium problems for the Timoshenko plate with a oblique crack
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 300
EP  - 308
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a60/
LA  - ru
ID  - SEMR_2015_12_a60
ER  - 
%0 Journal Article
%A N. P. Lazarev
%A N. V. Neustroeva
%A N. A. Nikolaeva
%T Optimal control of tilt angles in equilibrium problems for the Timoshenko plate with a oblique crack
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 300-308
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a60/
%G ru
%F SEMR_2015_12_a60
N. P. Lazarev; N. V. Neustroeva; N. A. Nikolaeva. Optimal control of tilt angles in equilibrium problems for the Timoshenko plate with a oblique crack. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 300-308. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a60/

[1] A. M. Khludnev, “Equilibrium problem of an elastic plate with an oblique crack”, Journal of Applied Mechanics and Technical Physics, 38:5 (1997), 757–761 | DOI | MR | Zbl

[2] V. A. Kovtunenko, A. N. Leont'ev, A. M. Khludnev, “Equilibrium problem of a plate with an oblique cut”, Journal of Applied Mechanics and Technical Physics, 39:2 (1998), 302–311 | DOI | MR | Zbl

[3] N. P. Lazarev, “Equilibrium problem for a Timoshenko plate with an oblique crack”, Journal of Applied Mechanics and Technical Physics, 54:4 (2013), 662–671 | DOI | MR | Zbl

[4] N. P. Lazarev, “Differentiation of the energy functional in the equilibrium problem for a plate with an oblique crack”, Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya: Matematika, Mekhanika, Informatika, 3:2 (2003), 62–73 | MR | Zbl

[5] E. M. Rudoy, “Asymptotics of the energy functional for a fourth-order mixed boundary value problem in a domain with a cut”, Siberian Mathematical Journal, 50:2 (2009), 341–354 | DOI | MR | Zbl

[6] E. M. Rudoy, “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys. | DOI

[7] N. P. Lazarev, “The Griffith formula for a Timoshenko-type plate with a curvilinear crack”, Sib. Zh. Ind. Mat., 16:2 (2013), 98–108 | MR

[8] V. V. Shcherbakov, “Existence of an optimal shape of the thin rigid inclusions in the Kirchhoff–Love plate”, J. Appl. Indust. Math., 8:1 (2014), 97–105 | DOI | MR

[9] A. M. Khludnev, V. A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton–Boston, 2000

[10] A. M. Khludnev, Elasticity Problems in Nonsmooth Domains, Fizmatlit, M., 2010

[11] N. P. Lazarev, “An equilibrium problem for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, Journal of Siberian Federal University. Mathematics and Physics, 6:1 (2013), 53–62

[12] B. L. Pelekh, Theory of Shells with Finite Shear Modulus, Nauk. Dumka, Kiev, 1973 | Zbl

[13] N. P. Lazarev, “An equilibrium problem for a Timoshenko plate with a through crack”, Sib. Zh. Ind. Mat., 14:4 (2011), 32–43 | MR | Zbl

[14] G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw-Hill, New-York, 1979 | Zbl

[15] V. Z. Parton, E. M. Morozov, Mechanics of Elastic-Plastic Fracture, Hemisphere Publishing Corp., Washington, 1989 | MR | Zbl

[16] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Pure and Applied Mathematics, 140, Elsevier, Academic Press, New York, 2003 | MR