Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a60, author = {N. P. Lazarev and N. V. Neustroeva and N. A. Nikolaeva}, title = {Optimal control of tilt angles in equilibrium problems for the {Timoshenko} plate with a oblique crack}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {300--308}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a60/} }
TY - JOUR AU - N. P. Lazarev AU - N. V. Neustroeva AU - N. A. Nikolaeva TI - Optimal control of tilt angles in equilibrium problems for the Timoshenko plate with a oblique crack JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 300 EP - 308 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a60/ LA - ru ID - SEMR_2015_12_a60 ER -
%0 Journal Article %A N. P. Lazarev %A N. V. Neustroeva %A N. A. Nikolaeva %T Optimal control of tilt angles in equilibrium problems for the Timoshenko plate with a oblique crack %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2015 %P 300-308 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a60/ %G ru %F SEMR_2015_12_a60
N. P. Lazarev; N. V. Neustroeva; N. A. Nikolaeva. Optimal control of tilt angles in equilibrium problems for the Timoshenko plate with a oblique crack. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 300-308. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a60/
[1] A. M. Khludnev, “Equilibrium problem of an elastic plate with an oblique crack”, Journal of Applied Mechanics and Technical Physics, 38:5 (1997), 757–761 | DOI | MR | Zbl
[2] V. A. Kovtunenko, A. N. Leont'ev, A. M. Khludnev, “Equilibrium problem of a plate with an oblique cut”, Journal of Applied Mechanics and Technical Physics, 39:2 (1998), 302–311 | DOI | MR | Zbl
[3] N. P. Lazarev, “Equilibrium problem for a Timoshenko plate with an oblique crack”, Journal of Applied Mechanics and Technical Physics, 54:4 (2013), 662–671 | DOI | MR | Zbl
[4] N. P. Lazarev, “Differentiation of the energy functional in the equilibrium problem for a plate with an oblique crack”, Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya: Matematika, Mekhanika, Informatika, 3:2 (2003), 62–73 | MR | Zbl
[5] E. M. Rudoy, “Asymptotics of the energy functional for a fourth-order mixed boundary value problem in a domain with a cut”, Siberian Mathematical Journal, 50:2 (2009), 341–354 | DOI | MR | Zbl
[6] E. M. Rudoy, “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys. | DOI
[7] N. P. Lazarev, “The Griffith formula for a Timoshenko-type plate with a curvilinear crack”, Sib. Zh. Ind. Mat., 16:2 (2013), 98–108 | MR
[8] V. V. Shcherbakov, “Existence of an optimal shape of the thin rigid inclusions in the Kirchhoff–Love plate”, J. Appl. Indust. Math., 8:1 (2014), 97–105 | DOI | MR
[9] A. M. Khludnev, V. A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton–Boston, 2000
[10] A. M. Khludnev, Elasticity Problems in Nonsmooth Domains, Fizmatlit, M., 2010
[11] N. P. Lazarev, “An equilibrium problem for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, Journal of Siberian Federal University. Mathematics and Physics, 6:1 (2013), 53–62
[12] B. L. Pelekh, Theory of Shells with Finite Shear Modulus, Nauk. Dumka, Kiev, 1973 | Zbl
[13] N. P. Lazarev, “An equilibrium problem for a Timoshenko plate with a through crack”, Sib. Zh. Ind. Mat., 14:4 (2011), 32–43 | MR | Zbl
[14] G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw-Hill, New-York, 1979 | Zbl
[15] V. Z. Parton, E. M. Morozov, Mechanics of Elastic-Plastic Fracture, Hemisphere Publishing Corp., Washington, 1989 | MR | Zbl
[16] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Pure and Applied Mathematics, 140, Elsevier, Academic Press, New York, 2003 | MR