On infinite Alperin groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 210-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is called Alperin group if any 2-generated subgroup of $G$ has a cyclic commutator subgroup. We prove the existence of Alperin torsion-free groups and Alperin groups, generated by involutions, with free abelian second commutator subgroups of any finite and countable rank. Also we prove that nilpotent torsion-free Alperin group has nilpotence class $\leq 2$. The last theorem of the article implies that the following condition is insufficient for a group $G$ to be Alperin group: $$\text{for any } a,b \in G \text{ commutator } [a,b,b] \text{ is a power of } [a,b].$$
Keywords: Alperin group, commutator subgroup, generators and defining relations, Hopfian group
Mots-clés : torsion-free group.
@article{SEMR_2015_12_a6,
     author = {B. M. Veretennikov},
     title = {On infinite {Alperin} groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {210--222},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a6/}
}
TY  - JOUR
AU  - B. M. Veretennikov
TI  - On infinite Alperin groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 210
EP  - 222
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a6/
LA  - ru
ID  - SEMR_2015_12_a6
ER  - 
%0 Journal Article
%A B. M. Veretennikov
%T On infinite Alperin groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 210-222
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a6/
%G ru
%F SEMR_2015_12_a6
B. M. Veretennikov. On infinite Alperin groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 210-222. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a6/

[1] J. L. Alperin, “On a special class of regular $p$-groups”, Trans. Am. Mat. Soc., 106:1 (1963), 77–99 | MR | Zbl

[2] B. M. Veretennikov, “Finite Alperin 2-groups with cyclic second commutants”, Algebra and Logic, 50:3 (2011), 226–244 | DOI | MR | Zbl

[3] B. M. Veretennikov, “On finite Alperin 2-groups with elementary abelian second commutants”, Sib. Mat. Zh., 53:3 (2012), 431–443 | DOI | MR | Zbl

[4] B. M. Veretennikov, “On the second commutants of finite Alperin groups”, Sib. Mat. Zh., 55:1 (2014), 19–34 | DOI | MR | Zbl

[5] Unsolved Problems in Group Theory, The Kourovka Notebook, 18, Novosibirsk, 2014 | MR

[6] B. Wilkens, “On the derived length of a finite Alperin 2-group”, Journal of Group Theory, 17:1 (2014), 151–174 | DOI | MR | Zbl

[7] B. M. Veretennikov, “On infinite Alperin groups with abelian second commutator subgroups”, Proceedings of the International Conference “Algebra and Logic, Theory and Applications” (Krasnoyarsk, 2013), 175–176

[8] M. Hall, The theory of groups, Chelsea Pub. Co., N.Y., 1959, MR0103215 pp. | MR

[9] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, Wiley, N.Y., 1966 | MR | Zbl

[10] A. I. Maltsev, “On isomorphic representation of infinite groups by means of matrices”, Mat. Sbornik, 8 (1940), 405–422 (in Russian) | MR | Zbl

[11] K. Hirsch, “Eine kennreichnende Eigenschaft nilpotenter Gruppen”, Math. Nachr., 4 (1950), 47–49 | MR

[12] B. Huppert, Endliche Gruppen, v. I, Springer Verlag, Berlin, 1967 | MR | Zbl