Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a6, author = {B. M. Veretennikov}, title = {On infinite {Alperin} groups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {210--222}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a6/} }
B. M. Veretennikov. On infinite Alperin groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 210-222. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a6/
[1] J. L. Alperin, “On a special class of regular $p$-groups”, Trans. Am. Mat. Soc., 106:1 (1963), 77–99 | MR | Zbl
[2] B. M. Veretennikov, “Finite Alperin 2-groups with cyclic second commutants”, Algebra and Logic, 50:3 (2011), 226–244 | DOI | MR | Zbl
[3] B. M. Veretennikov, “On finite Alperin 2-groups with elementary abelian second commutants”, Sib. Mat. Zh., 53:3 (2012), 431–443 | DOI | MR | Zbl
[4] B. M. Veretennikov, “On the second commutants of finite Alperin groups”, Sib. Mat. Zh., 55:1 (2014), 19–34 | DOI | MR | Zbl
[5] Unsolved Problems in Group Theory, The Kourovka Notebook, 18, Novosibirsk, 2014 | MR
[6] B. Wilkens, “On the derived length of a finite Alperin 2-group”, Journal of Group Theory, 17:1 (2014), 151–174 | DOI | MR | Zbl
[7] B. M. Veretennikov, “On infinite Alperin groups with abelian second commutator subgroups”, Proceedings of the International Conference “Algebra and Logic, Theory and Applications” (Krasnoyarsk, 2013), 175–176
[8] M. Hall, The theory of groups, Chelsea Pub. Co., N.Y., 1959, MR0103215 pp. | MR
[9] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, Wiley, N.Y., 1966 | MR | Zbl
[10] A. I. Maltsev, “On isomorphic representation of infinite groups by means of matrices”, Mat. Sbornik, 8 (1940), 405–422 (in Russian) | MR | Zbl
[11] K. Hirsch, “Eine kennreichnende Eigenschaft nilpotenter Gruppen”, Math. Nachr., 4 (1950), 47–49 | MR
[12] B. Huppert, Endliche Gruppen, v. I, Springer Verlag, Berlin, 1967 | MR | Zbl