On antipodal properties for eigenfunctions of graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 862-867
Voir la notice de l'article provenant de la source Math-Net.Ru
A graph $G=(V,E)$ of diameter $d$ is termed to be antipodal
if for any vertex $x\in{V}$ there is precisely one another $x^\prime\in{V}$ such that $d(x,x^\prime)=d$.
In addition, an antipodal graph is called rigid if for any pair of its antipodal vertices
$x,x^\prime\in{V}$ and any third vertex $y\in{V}$ the equality $d(x,x^\prime)=d(x,y)+d(y,x^\prime)$ holds.
In this paper eigenfunctions of rigid antipodal graphs are investigated. It is shown that every
homogeneous eigenfunction of such a graph with odd diameter is determined uniquely from its values
on vertices in two middle layers of the graph.
Keywords:
antipodality, eigenfunction of a graph.
Mots-clés : antipodal graph
Mots-clés : antipodal graph
@article{SEMR_2015_12_a57,
author = {S. V. Avgustinovich and E. V. Gorkunov and Yu. D. Syomina},
title = {On antipodal properties for eigenfunctions of graphs},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {862--867},
publisher = {mathdoc},
volume = {12},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a57/}
}
TY - JOUR AU - S. V. Avgustinovich AU - E. V. Gorkunov AU - Yu. D. Syomina TI - On antipodal properties for eigenfunctions of graphs JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 862 EP - 867 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a57/ LA - ru ID - SEMR_2015_12_a57 ER -
S. V. Avgustinovich; E. V. Gorkunov; Yu. D. Syomina. On antipodal properties for eigenfunctions of graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 862-867. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a57/