Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a54, author = {D. S. Krotov}, title = {On the number of maximum independent sets in {Doob} graphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {508--512}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a54/} }
D. S. Krotov. On the number of maximum independent sets in Doob graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 508-512. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a54/
[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989 | MR | Zbl
[2] D. S. Krotov, V. N. Potapov, “On the reconstruction of $n$-quasigroups of order $4$ and the upper bounds on their number”, Proc. the Conference Devoted to the 90th Anniversary of Alexei A. Lyapunov (Novosibirsk, Russia, Oct. 2001), 323–327 http://www.sbras.ru/ws/Lyap2001/2363
[3] D. S. Krotov, V. N. Potapov, “$n$-Ary quasigroups of order $4$”, SIAM J. Discrete Math., 23:2 (2009), 561–570 http://epubs.siam.org/journal/sjdmec | DOI | MR | Zbl
[4] D. S. Krotov, V. N. Potapov, P. V. Sokolova, “On reconstructing reducible $n$-ary quasigroups and switching subquasigroups”, Quasigroups Relat. Syst., 16:1 (2008), 55–67 http://www.math.md/en/publications/qrs/ | DOI | MR | Zbl
[5] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North Holland, Amsterdam, 1977 | MR | MR | Zbl
[6] B. D. McKay, I. M. Wanless, “On the number of Latin squares”, Ann. Comb., 9:3 (2005), 335–344 http://www.springerlink.com/content/0218-0006 | DOI | MR | Zbl
[7] B. D. McKay, I. M. Wanless, “A census of small Latin hypercubes”, SIAM J. Discrete Math., 22:2 (2008), 719–736 http://epubs.siam.org/journal/sjdmec | DOI | MR | Zbl
[8] Sib. Mat. Zh., 47:4 (2006), 873–887 | DOI | MR | Zbl
[9] Diskret. Mat., 24:1 (2012), 60–69 | DOI | DOI | MR | MR | Zbl