On the number of maximum independent sets in Doob graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 508-512.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Doob graph $D(m,n)$ is a distance-regular graph with the same parameters as the Hamming graph $H(2m+n,4)$. The maximum independent sets in the Doob graphs are analogs of the distance-$2$ MDS codes in the Hamming graphs. We prove that the logarithm of the number of the maximum independent sets in $D(m,n)$ grows as $2^{2m+n-1}(1+o(1))$. The main tool for the upper estimation is constructing an injective map from the class of maximum independent sets in $D(m,n)$ to the class of distance-$2$ MDS codes in $H(2m+n,4)$.
Keywords: Doob graph, independent set
Mots-clés : MDS code, latin hypercube.
@article{SEMR_2015_12_a54,
     author = {D. S. Krotov},
     title = {On the number of maximum independent sets in {Doob} graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {508--512},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a54/}
}
TY  - JOUR
AU  - D. S. Krotov
TI  - On the number of maximum independent sets in Doob graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 508
EP  - 512
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a54/
LA  - en
ID  - SEMR_2015_12_a54
ER  - 
%0 Journal Article
%A D. S. Krotov
%T On the number of maximum independent sets in Doob graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 508-512
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a54/
%G en
%F SEMR_2015_12_a54
D. S. Krotov. On the number of maximum independent sets in Doob graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 508-512. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a54/

[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989 | MR | Zbl

[2] D. S. Krotov, V. N. Potapov, “On the reconstruction of $n$-quasigroups of order $4$ and the upper bounds on their number”, Proc. the Conference Devoted to the 90th Anniversary of Alexei A. Lyapunov (Novosibirsk, Russia, Oct. 2001), 323–327 http://www.sbras.ru/ws/Lyap2001/2363

[3] D. S. Krotov, V. N. Potapov, “$n$-Ary quasigroups of order $4$”, SIAM J. Discrete Math., 23:2 (2009), 561–570 http://epubs.siam.org/journal/sjdmec | DOI | MR | Zbl

[4] D. S. Krotov, V. N. Potapov, P. V. Sokolova, “On reconstructing reducible $n$-ary quasigroups and switching subquasigroups”, Quasigroups Relat. Syst., 16:1 (2008), 55–67 http://www.math.md/en/publications/qrs/ | DOI | MR | Zbl

[5] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North Holland, Amsterdam, 1977 | MR | MR | Zbl

[6] B. D. McKay, I. M. Wanless, “On the number of Latin squares”, Ann. Comb., 9:3 (2005), 335–344 http://www.springerlink.com/content/0218-0006 | DOI | MR | Zbl

[7] B. D. McKay, I. M. Wanless, “A census of small Latin hypercubes”, SIAM J. Discrete Math., 22:2 (2008), 719–736 http://epubs.siam.org/journal/sjdmec | DOI | MR | Zbl

[8] Sib. Mat. Zh., 47:4 (2006), 873–887 | DOI | MR | Zbl

[9] Diskret. Mat., 24:1 (2012), 60–69 | DOI | DOI | MR | MR | Zbl