On the number of maximum independent sets in Doob graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 508-512

Voir la notice de l'article provenant de la source Math-Net.Ru

The Doob graph $D(m,n)$ is a distance-regular graph with the same parameters as the Hamming graph $H(2m+n,4)$. The maximum independent sets in the Doob graphs are analogs of the distance-$2$ MDS codes in the Hamming graphs. We prove that the logarithm of the number of the maximum independent sets in $D(m,n)$ grows as $2^{2m+n-1}(1+o(1))$. The main tool for the upper estimation is constructing an injective map from the class of maximum independent sets in $D(m,n)$ to the class of distance-$2$ MDS codes in $H(2m+n,4)$.
Keywords: Doob graph, independent set
Mots-clés : MDS code, latin hypercube.
@article{SEMR_2015_12_a54,
     author = {D. S. Krotov},
     title = {On the number of maximum independent sets in {Doob} graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {508--512},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a54/}
}
TY  - JOUR
AU  - D. S. Krotov
TI  - On the number of maximum independent sets in Doob graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 508
EP  - 512
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a54/
LA  - en
ID  - SEMR_2015_12_a54
ER  - 
%0 Journal Article
%A D. S. Krotov
%T On the number of maximum independent sets in Doob graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 508-512
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a54/
%G en
%F SEMR_2015_12_a54
D. S. Krotov. On the number of maximum independent sets in Doob graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 508-512. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a54/