Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a53, author = {Ekaterina N. Khomyakova and Elena V. Konstantinova}, title = {Note on exact values of multiplicities of eigenvalues of the {Star} graph}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {92--100}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a53/} }
TY - JOUR AU - Ekaterina N. Khomyakova AU - Elena V. Konstantinova TI - Note on exact values of multiplicities of eigenvalues of the Star graph JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 92 EP - 100 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a53/ LA - en ID - SEMR_2015_12_a53 ER -
%0 Journal Article %A Ekaterina N. Khomyakova %A Elena V. Konstantinova %T Note on exact values of multiplicities of eigenvalues of the Star graph %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2015 %P 92-100 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a53/ %G en %F SEMR_2015_12_a53
Ekaterina N. Khomyakova; Elena V. Konstantinova. Note on exact values of multiplicities of eigenvalues of the Star graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 92-100. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a53/
[1] A. Abdollahi, E. Vatandoost, Which Cayley graphs are integral?, The electronic journal of combinatorics, 16 (2009), 6–7 | MR
[2] S. B. Akers, B. Krishnamurthy, “A group-theoretic model for symmetric interconnection networks”, IEEE Trans. Comput., 38:4 (1989), 555–566 | DOI | MR | Zbl
[3] A. E. Brouwer, W. H. Haemers, Spectra of graphs, Springer, New York, 2012 | MR | Zbl
[4] G. Chapuy, V. Feray, A note on a Cayley graph of $Sym_{n}$, 2012, 3 pp., arXiv: 1202.4976v2
[5] A. Jucys, “Symmetric polynomials and the center of the symmetric group ring”, Reports Math. Phys., 5 (1974), 107–112 | DOI | MR | Zbl
[6] J. S. Jwo, S. Lakshmivarahan, S. K. Dhall, “Embedding of cycles and grids in star graphs”, J. Circuits. Syst. Comput., 1:1 (1991), 43–74 | DOI
[7] V. L. Kompel'makher, V. A. Liskovets, “Successive generation of permutations by means of a transposition basis”, Kibernetika, 3 (1975), 17–21 (in Russian) | MR
[8] R. Krakovski, B. Mohar, “Spectrum of Cayley Graphs on the Symmetric Group generated by transposition”, Linear Algebra and its applications, 437 (2012), 1033–1039 | DOI | MR | Zbl
[9] G. Murphy, “A new construction of Young's seminormal representation of the symmetric group”, J. Algebra, 69 (1981), 287–291 | DOI | MR
[10] A. Okounkov, A. Vershik, “A new approach to representation theory of symmetric groups”, Selecta Math., 2:4 (1996), 1–15 | DOI | MR
[11] B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, second edition, Springer, New York, 2001 | MR | Zbl
[12] P. J. Slater, “Generating all permutations by graphical transpositions”, Ars Combinatoria, 5 (1978), 219–225 | MR | Zbl