Note on exact values of multiplicities of eigenvalues of the Star graph
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 92-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Star graph is the Cayley graph on the symmetric group $Sym_n$ generated by the set of transpositions $\{(1 2),(1 3),\ldots,(1 n)\}$. A Chapuy–Feray combinatorial approach is used to obtain multiplicities of eigenvalues. Exact values are calculated up to $n=10$ and compared with lower bounds on multiplicities of eigenvalues for this graph.
Keywords: Cayley graphs; Star graph; graph spectrum; eigenvalues.
@article{SEMR_2015_12_a53,
     author = {Ekaterina N. Khomyakova and Elena V. Konstantinova},
     title = {Note on exact values of multiplicities of eigenvalues of the {Star} graph},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {92--100},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a53/}
}
TY  - JOUR
AU  - Ekaterina N. Khomyakova
AU  - Elena V. Konstantinova
TI  - Note on exact values of multiplicities of eigenvalues of the Star graph
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 92
EP  - 100
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a53/
LA  - en
ID  - SEMR_2015_12_a53
ER  - 
%0 Journal Article
%A Ekaterina N. Khomyakova
%A Elena V. Konstantinova
%T Note on exact values of multiplicities of eigenvalues of the Star graph
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 92-100
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a53/
%G en
%F SEMR_2015_12_a53
Ekaterina N. Khomyakova; Elena V. Konstantinova. Note on exact values of multiplicities of eigenvalues of the Star graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 92-100. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a53/

[1] A. Abdollahi, E. Vatandoost, Which Cayley graphs are integral?, The electronic journal of combinatorics, 16 (2009), 6–7 | MR

[2] S. B. Akers, B. Krishnamurthy, “A group-theoretic model for symmetric interconnection networks”, IEEE Trans. Comput., 38:4 (1989), 555–566 | DOI | MR | Zbl

[3] A. E. Brouwer, W. H. Haemers, Spectra of graphs, Springer, New York, 2012 | MR | Zbl

[4] G. Chapuy, V. Feray, A note on a Cayley graph of $Sym_{n}$, 2012, 3 pp., arXiv: 1202.4976v2

[5] A. Jucys, “Symmetric polynomials and the center of the symmetric group ring”, Reports Math. Phys., 5 (1974), 107–112 | DOI | MR | Zbl

[6] J. S. Jwo, S. Lakshmivarahan, S. K. Dhall, “Embedding of cycles and grids in star graphs”, J. Circuits. Syst. Comput., 1:1 (1991), 43–74 | DOI

[7] V. L. Kompel'makher, V. A. Liskovets, “Successive generation of permutations by means of a transposition basis”, Kibernetika, 3 (1975), 17–21 (in Russian) | MR

[8] R. Krakovski, B. Mohar, “Spectrum of Cayley Graphs on the Symmetric Group generated by transposition”, Linear Algebra and its applications, 437 (2012), 1033–1039 | DOI | MR | Zbl

[9] G. Murphy, “A new construction of Young's seminormal representation of the symmetric group”, J. Algebra, 69 (1981), 287–291 | DOI | MR

[10] A. Okounkov, A. Vershik, “A new approach to representation theory of symmetric groups”, Selecta Math., 2:4 (1996), 1–15 | DOI | MR

[11] B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, second edition, Springer, New York, 2001 | MR | Zbl

[12] P. J. Slater, “Generating all permutations by graphical transpositions”, Ars Combinatoria, 5 (1978), 219–225 | MR | Zbl