On weak separation property for affine fractal functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 967-972.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that a fractal affine function $f(x)$ defined by a system $\mathcal{S}$ which does not satisfy weak separation property is a quadratic function.
Keywords: self-similar set, weak separation property
Mots-clés : fractal, affine FIF.
@article{SEMR_2015_12_a50,
     author = {A. V. Tetenov and A. K. B. Chand},
     title = {On weak separation property for affine fractal functions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {967--972},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a50/}
}
TY  - JOUR
AU  - A. V. Tetenov
AU  - A. K. B. Chand
TI  - On weak separation property for affine fractal functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 967
EP  - 972
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a50/
LA  - en
ID  - SEMR_2015_12_a50
ER  - 
%0 Journal Article
%A A. V. Tetenov
%A A. K. B. Chand
%T On weak separation property for affine fractal functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 967-972
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a50/
%G en
%F SEMR_2015_12_a50
A. V. Tetenov; A. K. B. Chand. On weak separation property for affine fractal functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 967-972. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a50/

[1] Ch. Bandt, A. Kravchenko, “Differentiability of fractal curves”, Nonlinearity, 24:10 (2011), 2717–2728 | DOI | MR | Zbl

[2] Ch. Bandt, S. Graf, “Self-similar sets. 7: A characterization of self-similar fractals with positive Hausdorff measure”, Proc. Amer. Math. Soc., 114:4 (1992), 995–1001 | MR | Zbl

[3] M. F. Barnsley, “Fractal functions and interpolation”, Constructive Approximation, 2:4 (1986), 303–329 | DOI | MR | Zbl

[4] M. F. Barnsley, Fractals Everywhere, Academic Press, 1988 | MR | Zbl

[5] K.-S. Lau, S.-M. Ngai, “Multifractal measures and a weak separation condition”, Adv. Math., 141:1 (1999), 45–96 | DOI | MR | Zbl

[6] M. A. Navascués, A. K. B. Chand, V. P. Veedu, M. V. Sebastián, “Fractal Interpolation Functions: A Short Survey”, Applied Mathematics, 5 (2014), 1834–1841 | DOI

[7] A. V. Tetenov, “Self-similar Jordan arcs and graph-directed systems of similarities”, Siberian. Math. J., 47:5 (2006), 940–949 | DOI | MR | Zbl

[8] A. V. Tetenov, “On the rigidity of one-dimensional systems of contraction similitudes”, Siberian Electronical Math. Reports, 3 (2006), 342–345 | MR | Zbl

[9] M. P. W. Zerner, “Weak separation properties for self-similar sets”, Proc. Amer. Math. Soc., 124:11 (1996), 3529–3539 | DOI | MR | Zbl