Generic incompleteness of formal arithmetic
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 185-189
Voir la notice de l'article provenant de la source Math-Net.Ru
Famous Gödel's incompleteness theorem states that formal arithmetic (if it is consistent) has a statement that is unprovable and incontrovertible by any recursive systems of axioms. In this paper we prove that Gödel's theorem remains true if we restrict the set of all arithmetic statements by some natural subsets of “almost all” statements (so called strongly generic sets).
Keywords:
formal arithmetic, generic complexity.
@article{SEMR_2015_12_a5,
author = {A. N. Rybalov},
title = {Generic incompleteness of formal arithmetic},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {185--189},
publisher = {mathdoc},
volume = {12},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a5/}
}
A. N. Rybalov. Generic incompleteness of formal arithmetic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 185-189. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a5/