Generic incompleteness of formal arithmetic
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 185-189

Voir la notice de l'article provenant de la source Math-Net.Ru

Famous Gödel's incompleteness theorem states that formal arithmetic (if it is consistent) has a statement that is unprovable and incontrovertible by any recursive systems of axioms. In this paper we prove that Gödel's theorem remains true if we restrict the set of all arithmetic statements by some natural subsets of “almost all” statements (so called strongly generic sets).
Keywords: formal arithmetic, generic complexity.
@article{SEMR_2015_12_a5,
     author = {A. N. Rybalov},
     title = {Generic incompleteness of formal arithmetic},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {185--189},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a5/}
}
TY  - JOUR
AU  - A. N. Rybalov
TI  - Generic incompleteness of formal arithmetic
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 185
EP  - 189
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a5/
LA  - ru
ID  - SEMR_2015_12_a5
ER  - 
%0 Journal Article
%A A. N. Rybalov
%T Generic incompleteness of formal arithmetic
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 185-189
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a5/
%G ru
%F SEMR_2015_12_a5
A. N. Rybalov. Generic incompleteness of formal arithmetic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 185-189. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a5/