Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a5, author = {A. N. Rybalov}, title = {Generic incompleteness of formal arithmetic}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {185--189}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a5/} }
A. N. Rybalov. Generic incompleteness of formal arithmetic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 185-189. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a5/
[1] J. D. Hamkins, A. Miasnikov, “The halting problem is decidable on a set of asymptotic probability one”, Notre Dame Journal of Formal Logic, 47:4 (2006), 515–524 | DOI | MR
[2] I. Kapovich, A. Myasnikov, P. Schupp, V. Shpilrain, “Generic-case complexity, decision problems in group theory and random walks”, Journal of Algebra, 264:2 (2003), 665–694 | DOI | MR
[3] I. Kapovich, A. Myasnikov, P. Schupp, V. Shpilrain, “Average-case complexity for the word and membership problems in group theory”, Advances in Mathematics, 190 (2005), 343–359 | DOI | MR
[4] A. Myasnikov, A. Rybalov, “Generic complexity of undecidable problems”, Journal of Symbolic Logic, 73:2 (2008), 656–673 | DOI | MR
[5] A. Rybalov, “On the strongly generic undecidability of the Halting Problem”, Theoretical Computer Science, 377 (2007), 268–270 | DOI | MR
[6] A. Rybalov, “Generic Complexity of Presburger Arithmetic”, Theory of Computing Systems, 46:1 (2010), 2–8 | DOI | MR
[7] A. Rybalov, “Generic complexity of first-order theories”, Siberian Electronic Mathematical Reports, 8 (2011), 168–178 | MR
[8] A. Rybalov, “On generic undecidability of Hilbert's tenth problem”, Herald of Omsk University, 4 (2011), 19–22
[9] A. Rybalov, “On generic complexity of the Boolean truthfulness problem”, Herald of Omsk University, 4 (2012), 36–40
[10] A. Rybalov, “Generic complexity of the Diophantine problem”, Groups Complexity Cryptology, 5:1 (2013), 25–30 | DOI | MR
[11] A. Rybalov, “On generic complexity of the Boolean satisfiability problem”, Herald of Omsk University, 4 (2013), 52–56