Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a46, author = {V. A. Shastin}, title = {A combinatorial model of the {Lipschitz} metric for surfaces with punctures}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {910--929}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a46/} }
V. A. Shastin. A combinatorial model of the Lipschitz metric for surfaces with punctures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 910-929. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a46/
[1] R. Benedetti, C. Petronio, Lectures on Hyperbolic Geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1992 | MR | Zbl
[2] A. J. Casson, S. A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, 9, Cambridge University Press, Cambridge, 1988 | MR | Zbl
[3] Y.-E. Choi, K. Rafi, “Comparison between Teichmüller and Lipschitz metrics”, J. Lond. Math. Soc. (2), 76:2 (2007), 739–756 | DOI | MR | Zbl
[4] I. Dynnikov, Counting intersections of normal curves, unpublished preprint
[5] I. Dynnikov, B. Wiest, “On the complexity of braids”, J. Eur. Math. Soc. (JEMS), 9:4 (2007), 801–840 | DOI | MR | Zbl
[6] B. Farb, D. Margalit, A primer on mapping class group, Princeton Math. Ser., 49, Princeton University Press, Princeton, N.J., 2011 | MR | Zbl
[7] A. Fathi, F. Laudenbach, V. Poenaru, Thurston's work on surfaces, translated by Djun Kim, Dan Margalit, Mathematical Notes, 48, Princeton University Press, 2012 | MR | Zbl
[8] Ursula Hamenstädt, “Teichmüller theory”, Moduli Spaces of Riemann Surfaces, eds. B. Farb, R. Hain, E. Looijenga, AMS/PCMI, 2013, 45–108 | MR | Zbl
[9] M. W. Hirsch, Differential topology, Grad. Texts in Math., 33, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl
[10] M. Kapovich, Hyperbolic Manifolds and Discrete Groups: Lectures on Thurston's Hyperbolization, Progress in Mathematics, Birkhauser, 2000 | MR
[11] A. Papdopoulos, “Introduction to Teichmüller Theory, Old and New”, Handbook of Teichmüller spaces, v. I, European Mathematical Society Publishing House, Zürich, 2007, 1–30
[12] R. C. Penner, J. L. Harer, Combinatorics of train tracks, Annals of Mathematics Studies, 125, Princeton University Press, Princeton, NJ, 1992 | MR | Zbl
[13] K. Rafi, “A combinatorial model for the Teichmüller metric”, GAFA Geometric And Functional Analysis, 17:3 (2007), 936–959 | DOI | MR | Zbl
[14] D. Springer, Vvedenie v teoriyu rimanovykh poverkhnostei, Izdatelstvo inostrannoi literatury, M., 1960 | MR
[15] O. Teichmüller, Gesammelte Abhandlungen, Springer, 1982 | MR | Zbl
[16] W. P. Thurston, Minimal stretch maps between hyperbolic surfaces, Preprint, 1986