A combinatorial model of the Lipschitz metric for surfaces with punctures
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 910-929.

Voir la notice de l'article provenant de la source Math-Net.Ru

The zipped word length function introduced by Ivan Dynnikov in connection with the word problem in the mapping class groups of punctured surfaces is considered. We prove that the mapping class group with the metric determined by this function is quasi-isometric to the thick part of the Teichmüller space equipped with the Lipschitz metric.
Keywords: Mapping class group, Teichmüller space, Teichmüller metric, Thurston's asymmetric metric.
@article{SEMR_2015_12_a46,
     author = {V. A. Shastin},
     title = {A combinatorial model of the {Lipschitz} metric for surfaces with punctures},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {910--929},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a46/}
}
TY  - JOUR
AU  - V. A. Shastin
TI  - A combinatorial model of the Lipschitz metric for surfaces with punctures
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 910
EP  - 929
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a46/
LA  - ru
ID  - SEMR_2015_12_a46
ER  - 
%0 Journal Article
%A V. A. Shastin
%T A combinatorial model of the Lipschitz metric for surfaces with punctures
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 910-929
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a46/
%G ru
%F SEMR_2015_12_a46
V. A. Shastin. A combinatorial model of the Lipschitz metric for surfaces with punctures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 910-929. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a46/

[1] R. Benedetti, C. Petronio, Lectures on Hyperbolic Geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1992 | MR | Zbl

[2] A. J. Casson, S. A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, 9, Cambridge University Press, Cambridge, 1988 | MR | Zbl

[3] Y.-E. Choi, K. Rafi, “Comparison between Teichmüller and Lipschitz metrics”, J. Lond. Math. Soc. (2), 76:2 (2007), 739–756 | DOI | MR | Zbl

[4] I. Dynnikov, Counting intersections of normal curves, unpublished preprint

[5] I. Dynnikov, B. Wiest, “On the complexity of braids”, J. Eur. Math. Soc. (JEMS), 9:4 (2007), 801–840 | DOI | MR | Zbl

[6] B. Farb, D. Margalit, A primer on mapping class group, Princeton Math. Ser., 49, Princeton University Press, Princeton, N.J., 2011 | MR | Zbl

[7] A. Fathi, F. Laudenbach, V. Poenaru, Thurston's work on surfaces, translated by Djun Kim, Dan Margalit, Mathematical Notes, 48, Princeton University Press, 2012 | MR | Zbl

[8] Ursula Hamenstädt, “Teichmüller theory”, Moduli Spaces of Riemann Surfaces, eds. B. Farb, R. Hain, E. Looijenga, AMS/PCMI, 2013, 45–108 | MR | Zbl

[9] M. W. Hirsch, Differential topology, Grad. Texts in Math., 33, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl

[10] M. Kapovich, Hyperbolic Manifolds and Discrete Groups: Lectures on Thurston's Hyperbolization, Progress in Mathematics, Birkhauser, 2000 | MR

[11] A. Papdopoulos, “Introduction to Teichmüller Theory, Old and New”, Handbook of Teichmüller spaces, v. I, European Mathematical Society Publishing House, Zürich, 2007, 1–30

[12] R. C. Penner, J. L. Harer, Combinatorics of train tracks, Annals of Mathematics Studies, 125, Princeton University Press, Princeton, NJ, 1992 | MR | Zbl

[13] K. Rafi, “A combinatorial model for the Teichmüller metric”, GAFA Geometric And Functional Analysis, 17:3 (2007), 936–959 | DOI | MR | Zbl

[14] D. Springer, Vvedenie v teoriyu rimanovykh poverkhnostei, Izdatelstvo inostrannoi literatury, M., 1960 | MR

[15] O. Teichmüller, Gesammelte Abhandlungen, Springer, 1982 | MR | Zbl

[16] W. P. Thurston, Minimal stretch maps between hyperbolic surfaces, Preprint, 1986