On the integrable magnetic geodesic flow on a 2-torus
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 868-873.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the magnetic geodesic flow on a 2-torus is considered. We study a semi-hamiltonian quasi-linear PDEs which is equivalent to the existence of polynomial in momenta first integral of magnetic geodesic flow on fixed energy level. It is known that diagonal metric associated with this system is Egorov one if degree of the first integral is equal to 2 or 3. In this paper we prove this fact in the case of existence of the first integral of any degree.
Keywords: semi-hamiltonian systems, Egorov metrics.
@article{SEMR_2015_12_a45,
     author = {S. V. Agapov},
     title = {On the integrable magnetic geodesic flow on a 2-torus},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {868--873},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a45/}
}
TY  - JOUR
AU  - S. V. Agapov
TI  - On the integrable magnetic geodesic flow on a 2-torus
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 868
EP  - 873
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a45/
LA  - ru
ID  - SEMR_2015_12_a45
ER  - 
%0 Journal Article
%A S. V. Agapov
%T On the integrable magnetic geodesic flow on a 2-torus
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 868-873
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a45/
%G ru
%F SEMR_2015_12_a45
S. V. Agapov. On the integrable magnetic geodesic flow on a 2-torus. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 868-873. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a45/

[1] M. Bialy, A. E. Mironov, “New semi-hamiltonian hierarchy related to integrable magnetic flows on surfaces”, Central European Journal of Mathematics, 10:5 (2012), 1596–1604 | DOI | MR | Zbl

[2] M. V. Pavlov, S. P. Tsarev, On Local Description of Two-Dimensional Geodesic Flows with a Polynomial First Integral, arXiv: 1509.03084v1

[3] V. V. Kozlov et al., “Polynomial integrals of geodesic flows on a two-dimensional torus”, Russian Academy of Sciences. Sbornik Mathematics, 83:2 (1995), 469–481 | DOI | MR

[4] V. V. Kozlov et al., “On the integrability of hamiltonian systems with toral position space”, Mathematics of the USSR-Sbornik, 63:1 (1989), 121–139 | DOI | MR | Zbl

[5] V. N. Kolokol'tsov, “Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities”, Mathematics of the USSR-Izvestiya, 21:2 (1983), 291–306 | DOI | MR | Zbl

[6] M. Bialy, A. E. Mironov, “Rich quasi-linear system for integrable geodesic flow on 2-torus”, Discrete and Continuous Dynamical Systems-Series A, 29:1 (2011), 81–90 | DOI | MR | Zbl

[7] S. P. Tsarev, “On Poisson brackets and one-dimensional hamiltonian systems of hydrodynamic type”, Doklady Mathematics, 31 (1985), 488–491 | MR | Zbl

[8] S. P. Tsarev, “The geometry of hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Mathematics of the USSR-Izvestiya, 37:2 (1991), 397–419 | DOI | MR

[9] B. Sevennec, Geometrie des systemes de lois de conservation, Memories, 56, Soc. Math. de France, Marseille, 1994 | MR | Zbl

[10] M. Bialy, A. E. Mironov, “Integrable geodesic flows on 2-torus: formal solutions and variational principle”, Journal of Geometry and Physics, 87:1 (2015), 39–47 | DOI | MR | Zbl

[11] M. Bialy, “Richness or semi-hamiltonicity of quasi-linear systems that are not in evolution form”, Quarterly of Applied Math., 71:4 (2013), 787–796 | DOI | MR | Zbl

[12] M. V. Pavlov, S. P. Tsarev, “Tri-hamiltonian structures of Egorov Systems of hydrodynamic type”, Functional Analysis and its Applications, 37:1 (2003), 32–45 | DOI | MR | Zbl

[13] V. V. Kozlov, Symmetries, topology, and resonances in Hamiltonian mechanics, Springer Verlag, Berlin, 1996 | MR

[14] V. V. Ten, “Polynomial first integrals for systems with gyroscopic forces”, Math. Notes, 68:1 (2000), 135–138 | MR | Zbl

[15] S. V. Bolotin, “First integrals of systems with gyroscopic forces”, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 6 (1984), 75–82 | MR | Zbl

[16] I. A. Taimanov, On an integrable magnetic geodesic flow on the two-torus, arXiv: 1508.03745v1 | MR