Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a45, author = {S. V. Agapov}, title = {On the integrable magnetic geodesic flow on a 2-torus}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {868--873}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a45/} }
S. V. Agapov. On the integrable magnetic geodesic flow on a 2-torus. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 868-873. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a45/
[1] M. Bialy, A. E. Mironov, “New semi-hamiltonian hierarchy related to integrable magnetic flows on surfaces”, Central European Journal of Mathematics, 10:5 (2012), 1596–1604 | DOI | MR | Zbl
[2] M. V. Pavlov, S. P. Tsarev, On Local Description of Two-Dimensional Geodesic Flows with a Polynomial First Integral, arXiv: 1509.03084v1
[3] V. V. Kozlov et al., “Polynomial integrals of geodesic flows on a two-dimensional torus”, Russian Academy of Sciences. Sbornik Mathematics, 83:2 (1995), 469–481 | DOI | MR
[4] V. V. Kozlov et al., “On the integrability of hamiltonian systems with toral position space”, Mathematics of the USSR-Sbornik, 63:1 (1989), 121–139 | DOI | MR | Zbl
[5] V. N. Kolokol'tsov, “Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities”, Mathematics of the USSR-Izvestiya, 21:2 (1983), 291–306 | DOI | MR | Zbl
[6] M. Bialy, A. E. Mironov, “Rich quasi-linear system for integrable geodesic flow on 2-torus”, Discrete and Continuous Dynamical Systems-Series A, 29:1 (2011), 81–90 | DOI | MR | Zbl
[7] S. P. Tsarev, “On Poisson brackets and one-dimensional hamiltonian systems of hydrodynamic type”, Doklady Mathematics, 31 (1985), 488–491 | MR | Zbl
[8] S. P. Tsarev, “The geometry of hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Mathematics of the USSR-Izvestiya, 37:2 (1991), 397–419 | DOI | MR
[9] B. Sevennec, Geometrie des systemes de lois de conservation, Memories, 56, Soc. Math. de France, Marseille, 1994 | MR | Zbl
[10] M. Bialy, A. E. Mironov, “Integrable geodesic flows on 2-torus: formal solutions and variational principle”, Journal of Geometry and Physics, 87:1 (2015), 39–47 | DOI | MR | Zbl
[11] M. Bialy, “Richness or semi-hamiltonicity of quasi-linear systems that are not in evolution form”, Quarterly of Applied Math., 71:4 (2013), 787–796 | DOI | MR | Zbl
[12] M. V. Pavlov, S. P. Tsarev, “Tri-hamiltonian structures of Egorov Systems of hydrodynamic type”, Functional Analysis and its Applications, 37:1 (2003), 32–45 | DOI | MR | Zbl
[13] V. V. Kozlov, Symmetries, topology, and resonances in Hamiltonian mechanics, Springer Verlag, Berlin, 1996 | MR
[14] V. V. Ten, “Polynomial first integrals for systems with gyroscopic forces”, Math. Notes, 68:1 (2000), 135–138 | MR | Zbl
[15] S. V. Bolotin, “First integrals of systems with gyroscopic forces”, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 6 (1984), 75–82 | MR | Zbl
[16] I. A. Taimanov, On an integrable magnetic geodesic flow on the two-torus, arXiv: 1508.03745v1 | MR