On axisymmetric Helfrich surfaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 854-861 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study axisymmetric Helfrich surfaces. We prove the convergence of the formal power series solution of the Euler–Lagrange equation for the Helfrich functional in a neighborhood of its singular point. We also prove the following inequality $$ \lambda_v R^3+ (c^2+2\lambda_a)R^2-2cR+1\geqslant 0, $$ for a smooth axisymmetric Helfrich surfaces, that homeomorphic to a sphere, where $c$ is the spontaneous curvature of the surface, $\lambda_a$ and $\lambda_v$ are Lagrange multipliers, $R$ is the maximum distance between the axis of rotational symmetry and surface.
Keywords: Helfrich spheres of rotation, Willmore surface of rotation, Lobachevsky hyperbolic plane.
Mots-clés : Delaunay surface of rotation
@article{SEMR_2015_12_a44,
     author = {S. M. Cherosova and D. A. Nogovitsyn and E. I. Shamaev},
     title = {On axisymmetric {Helfrich} surfaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {854--861},
     year = {2015},
     volume = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a44/}
}
TY  - JOUR
AU  - S. M. Cherosova
AU  - D. A. Nogovitsyn
AU  - E. I. Shamaev
TI  - On axisymmetric Helfrich surfaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 854
EP  - 861
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a44/
LA  - en
ID  - SEMR_2015_12_a44
ER  - 
%0 Journal Article
%A S. M. Cherosova
%A D. A. Nogovitsyn
%A E. I. Shamaev
%T On axisymmetric Helfrich surfaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 854-861
%V 12
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a44/
%G en
%F SEMR_2015_12_a44
S. M. Cherosova; D. A. Nogovitsyn; E. I. Shamaev. On axisymmetric Helfrich surfaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 854-861. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a44/

[1] W. Helfrich, “Elastic properties of lipid bilayers: theory and possible experiments”, Zeitschrift für Naturforschung. Teil C, Biochemie, Biophysik, Biologie, Virologie, 28:11 (1973), 693–703

[2] H. Naito, M. Okuda, Z.-C. Ou-Yang, “New solutions to the Helfrich variation problem for the shapes of lipid bilayer vesicles: Beyond Delaunay's surfaces”, Physical Review Letters, 74:21 (1995), 4345–4348 | DOI

[3] C. Delaunay, “Sur la surface de révolution dont la courbure moyenne est constante”, Journal de Mathématiques Pures et Appliquées, 6 (1841), 309–314

[4] R. Bryant, P. Griffiths, “Reduction for constrained variational problems and $\int k^2/2\, ds$”, American Journal of Mathematics, 108:3 (1986), 525–570 | DOI

[5] J. Langer, D. Singer, “Curves in the hyperbolic plane and mean curvature of tori in 3-space”, Bulletin of the London Mathematical Society, 16:5 (1984), 531–534 | DOI

[6] W.-M. Zheng, Z.-C. Ou-Yang, “Power series solutions for vesicles”, Communications in Theoretical Physics, 15:4 (1991), 505–508 | DOI

[7] W.-M. Zheng, J. Liu, “Helfrich shape equation for axisymmetric vesicles as a first integral”, Physical Review E, 48:4 (1993), 2856–2860 | DOI