Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a44, author = {S. M. Cherosova and D. A. Nogovitsyn and E. I. Shamaev}, title = {On axisymmetric {Helfrich} surfaces}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {854--861}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a44/} }
TY - JOUR AU - S. M. Cherosova AU - D. A. Nogovitsyn AU - E. I. Shamaev TI - On axisymmetric Helfrich surfaces JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 854 EP - 861 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a44/ LA - en ID - SEMR_2015_12_a44 ER -
S. M. Cherosova; D. A. Nogovitsyn; E. I. Shamaev. On axisymmetric Helfrich surfaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 854-861. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a44/
[1] W. Helfrich, “Elastic properties of lipid bilayers: theory and possible experiments”, Zeitschrift für Naturforschung. Teil C, Biochemie, Biophysik, Biologie, Virologie, 28:11 (1973), 693–703
[2] H. Naito, M. Okuda, Z.-C. Ou-Yang, “New solutions to the Helfrich variation problem for the shapes of lipid bilayer vesicles: Beyond Delaunay's surfaces”, Physical Review Letters, 74:21 (1995), 4345–4348 | DOI
[3] C. Delaunay, “Sur la surface de révolution dont la courbure moyenne est constante”, Journal de Mathématiques Pures et Appliquées, 6 (1841), 309–314
[4] R. Bryant, P. Griffiths, “Reduction for constrained variational problems and $\int k^2/2\, ds$”, American Journal of Mathematics, 108:3 (1986), 525–570 | DOI
[5] J. Langer, D. Singer, “Curves in the hyperbolic plane and mean curvature of tori in 3-space”, Bulletin of the London Mathematical Society, 16:5 (1984), 531–534 | DOI
[6] W.-M. Zheng, Z.-C. Ou-Yang, “Power series solutions for vesicles”, Communications in Theoretical Physics, 15:4 (1991), 505–508 | DOI
[7] W.-M. Zheng, J. Liu, “Helfrich shape equation for axisymmetric vesicles as a first integral”, Physical Review E, 48:4 (1993), 2856–2860 | DOI