On axisymmetric Helfrich surfaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 854-861.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study axisymmetric Helfrich surfaces. We prove the convergence of the formal power series solution of the Euler–Lagrange equation for the Helfrich functional in a neighborhood of its singular point. We also prove the following inequality $$ \lambda_v R^3+ (c^2+2\lambda_a)R^2-2cR+1\geqslant 0, $$ for a smooth axisymmetric Helfrich surfaces, that homeomorphic to a sphere, where $c$ is the spontaneous curvature of the surface, $\lambda_a$ and $\lambda_v$ are Lagrange multipliers, $R$ is the maximum distance between the axis of rotational symmetry and surface.
Keywords: Helfrich spheres of rotation, Willmore surface of rotation, Lobachevsky hyperbolic plane.
Mots-clés : Delaunay surface of rotation
@article{SEMR_2015_12_a44,
     author = {S. M. Cherosova and D. A. Nogovitsyn and E. I. Shamaev},
     title = {On axisymmetric {Helfrich} surfaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {854--861},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a44/}
}
TY  - JOUR
AU  - S. M. Cherosova
AU  - D. A. Nogovitsyn
AU  - E. I. Shamaev
TI  - On axisymmetric Helfrich surfaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 854
EP  - 861
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a44/
LA  - en
ID  - SEMR_2015_12_a44
ER  - 
%0 Journal Article
%A S. M. Cherosova
%A D. A. Nogovitsyn
%A E. I. Shamaev
%T On axisymmetric Helfrich surfaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 854-861
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a44/
%G en
%F SEMR_2015_12_a44
S. M. Cherosova; D. A. Nogovitsyn; E. I. Shamaev. On axisymmetric Helfrich surfaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 854-861. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a44/

[1] W. Helfrich, “Elastic properties of lipid bilayers: theory and possible experiments”, Zeitschrift für Naturforschung. Teil C, Biochemie, Biophysik, Biologie, Virologie, 28:11 (1973), 693–703

[2] H. Naito, M. Okuda, Z.-C. Ou-Yang, “New solutions to the Helfrich variation problem for the shapes of lipid bilayer vesicles: Beyond Delaunay's surfaces”, Physical Review Letters, 74:21 (1995), 4345–4348 | DOI

[3] C. Delaunay, “Sur la surface de révolution dont la courbure moyenne est constante”, Journal de Mathématiques Pures et Appliquées, 6 (1841), 309–314

[4] R. Bryant, P. Griffiths, “Reduction for constrained variational problems and $\int k^2/2\, ds$”, American Journal of Mathematics, 108:3 (1986), 525–570 | DOI

[5] J. Langer, D. Singer, “Curves in the hyperbolic plane and mean curvature of tori in 3-space”, Bulletin of the London Mathematical Society, 16:5 (1984), 531–534 | DOI

[6] W.-M. Zheng, Z.-C. Ou-Yang, “Power series solutions for vesicles”, Communications in Theoretical Physics, 15:4 (1991), 505–508 | DOI

[7] W.-M. Zheng, J. Liu, “Helfrich shape equation for axisymmetric vesicles as a first integral”, Physical Review E, 48:4 (1993), 2856–2860 | DOI