Euclidean realization of the product of cycles without hidden symmetries
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 777-783
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that any graph G that is the Cartesian product of two cycles can be realized in four-dimensional Euclidean space in such a way that every edge-preserving permutation of the vertices of G extends to a symmetry of the Euclidean realization of G. As a corollary, there exists an infinite series of regular toroidal two-dimensional polyhedra inscribed in the Clifford torus just like the five regular spherical polyhedra are inscribed in a sphere.
Mots-clés :
quadrangulation, torus
Keywords: Cartesian product of graphs, geometric realization, symmetry group, regular polyhedron.
Keywords: Cartesian product of graphs, geometric realization, symmetry group, regular polyhedron.
@article{SEMR_2015_12_a43,
author = {S. Lawrencenko and A. Yu. Shchikanov},
title = {Euclidean realization of the product of cycles without hidden symmetries},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {777--783},
publisher = {mathdoc},
volume = {12},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a43/}
}
TY - JOUR AU - S. Lawrencenko AU - A. Yu. Shchikanov TI - Euclidean realization of the product of cycles without hidden symmetries JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 777 EP - 783 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a43/ LA - ru ID - SEMR_2015_12_a43 ER -
S. Lawrencenko; A. Yu. Shchikanov. Euclidean realization of the product of cycles without hidden symmetries. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 777-783. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a43/