Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a43, author = {S. Lawrencenko and A. Yu. Shchikanov}, title = {Euclidean realization of the product of cycles without hidden symmetries}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {777--783}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a43/} }
TY - JOUR AU - S. Lawrencenko AU - A. Yu. Shchikanov TI - Euclidean realization of the product of cycles without hidden symmetries JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 777 EP - 783 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a43/ LA - ru ID - SEMR_2015_12_a43 ER -
S. Lawrencenko; A. Yu. Shchikanov. Euclidean realization of the product of cycles without hidden symmetries. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 777-783. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a43/
[1] B. Chen, J. H. Kwak, S. Lawrencenko, “Weinberg bounds over nonspherical graphs”, J. Graph Theory, 33:4 (2000), 220–236 | 3.0.CO;2-Z class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[2] H. S. M. Coxeter, “Configurations and maps”, Rep. Math. Colloq., Ser. II, 8 (1948), 18–38 | MR | Zbl
[3] R. Frucht, “Herstellung von Graphen mit vorgegebener abstrakter Gruppe”, Compos. Math., 6 (1938), 239–250 | MR
[4] B. Grünbaum, Are your polyhedra the same as my polyhedra?, Discrete and Computational Geometry: The Goodman-Pollack Festschrift, Algorithms Comb., 25, eds. Aronov B., Basu S., Pach J., and Sharir M., Springer, Berlin, 2003, 461–488 | MR | Zbl
[5] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969 | MR | Zbl
[6] F. Harary, E. M. Palmer, “On the automorphism group of a composite graph”, Studia Sci. Math. Hungar., 3 (1968), 439–441 | MR | Zbl
[7] S. Lawrencenko, “Polyhedral suspensions of arbitrary genus”, Graphs Comb., 26:4 (2010), 537–548 | DOI | MR | Zbl
[8] S. Lawrencenko, “A new regular polyhedron”, Discrete Mathematics and Its Applications, Proceedings of the 10th International Workshop (Moscow, Mechanics and Mathematics Faculty, Lomonosov Moscow State University, 2010), ed. Kasim-Zade O. M., 495–498 (in Russian) https://t.co/W3De2FsJVS
[9] G. Olshevsky, Section 6. Convex Uniform Prismatic Polychora, http://t.co/qYlbRVH2PD