Euclidean realization of the product of cycles without hidden symmetries
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 777-783.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that any graph G that is the Cartesian product of two cycles can be realized in four-dimensional Euclidean space in such a way that every edge-preserving permutation of the vertices of G extends to a symmetry of the Euclidean realization of G. As a corollary, there exists an infinite series of regular toroidal two-dimensional polyhedra inscribed in the Clifford torus just like the five regular spherical polyhedra are inscribed in a sphere.
Mots-clés : quadrangulation, torus
Keywords: Cartesian product of graphs, geometric realization, symmetry group, regular polyhedron.
@article{SEMR_2015_12_a43,
     author = {S. Lawrencenko and A. Yu. Shchikanov},
     title = {Euclidean realization of the product of cycles without hidden symmetries},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {777--783},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a43/}
}
TY  - JOUR
AU  - S. Lawrencenko
AU  - A. Yu. Shchikanov
TI  - Euclidean realization of the product of cycles without hidden symmetries
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 777
EP  - 783
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a43/
LA  - ru
ID  - SEMR_2015_12_a43
ER  - 
%0 Journal Article
%A S. Lawrencenko
%A A. Yu. Shchikanov
%T Euclidean realization of the product of cycles without hidden symmetries
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 777-783
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a43/
%G ru
%F SEMR_2015_12_a43
S. Lawrencenko; A. Yu. Shchikanov. Euclidean realization of the product of cycles without hidden symmetries. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 777-783. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a43/

[1] B. Chen, J. H. Kwak, S. Lawrencenko, “Weinberg bounds over nonspherical graphs”, J. Graph Theory, 33:4 (2000), 220–236 | 3.0.CO;2-Z class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[2] H. S. M. Coxeter, “Configurations and maps”, Rep. Math. Colloq., Ser. II, 8 (1948), 18–38 | MR | Zbl

[3] R. Frucht, “Herstellung von Graphen mit vorgegebener abstrakter Gruppe”, Compos. Math., 6 (1938), 239–250 | MR

[4] B. Grünbaum, Are your polyhedra the same as my polyhedra?, Discrete and Computational Geometry: The Goodman-Pollack Festschrift, Algorithms Comb., 25, eds. Aronov B., Basu S., Pach J., and Sharir M., Springer, Berlin, 2003, 461–488 | MR | Zbl

[5] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969 | MR | Zbl

[6] F. Harary, E. M. Palmer, “On the automorphism group of a composite graph”, Studia Sci. Math. Hungar., 3 (1968), 439–441 | MR | Zbl

[7] S. Lawrencenko, “Polyhedral suspensions of arbitrary genus”, Graphs Comb., 26:4 (2010), 537–548 | DOI | MR | Zbl

[8] S. Lawrencenko, “A new regular polyhedron”, Discrete Mathematics and Its Applications, Proceedings of the 10th International Workshop (Moscow, Mechanics and Mathematics Faculty, Lomonosov Moscow State University, 2010), ed. Kasim-Zade O. M., 495–498 (in Russian) https://t.co/W3De2FsJVS

[9] G. Olshevsky, Section 6. Convex Uniform Prismatic Polychora, http://t.co/qYlbRVH2PD