Some problems on knots, braids, and automorphism groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 394-405.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present and discuss some open problems formulated by participants of the International Workshop “Knots, Braids, and Automorphism Groups” held in Novosibirsk, 2014. Problems are related to palindromic and commutator widths of groups; properties of Brunnian braids and two-colored braids, corresponding to an amalgamation of groups; extreme properties of hyperbolic 3-orbifold groups, relations between inner and quasi-inner automorphisms of groups; and Staic's construction of symmetric cohomology of groups.
Keywords: Knot, braid, faithful representation, palindromic width, symmetric cohomology.
@article{SEMR_2015_12_a41,
     author = {V. Bardakov and K. Gongopadhyay and M. Singh and A. Vesnin and J. Wu},
     title = {Some problems on knots, braids, and automorphism groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {394--405},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a41/}
}
TY  - JOUR
AU  - V. Bardakov
AU  - K. Gongopadhyay
AU  - M. Singh
AU  - A. Vesnin
AU  - J. Wu
TI  - Some problems on knots, braids, and automorphism groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 394
EP  - 405
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a41/
LA  - en
ID  - SEMR_2015_12_a41
ER  - 
%0 Journal Article
%A V. Bardakov
%A K. Gongopadhyay
%A M. Singh
%A A. Vesnin
%A J. Wu
%T Some problems on knots, braids, and automorphism groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 394-405
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a41/
%G en
%F SEMR_2015_12_a41
V. Bardakov; K. Gongopadhyay; M. Singh; A. Vesnin; J. Wu. Some problems on knots, braids, and automorphism groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 394-405. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a41/

[1] The Workshop homepage, http://math.nsc.ru/conference/geomtop/workshop2014

[2] V. Bardakov, V. Shpilrain, V. Tolstykh, “On the palindromic and primitive widths of a free group”, J. Algebra, 285:2 (2005), 574–585 | MR | Zbl

[3] V. Bardakov, V. Tolstykh, “The palindromic width of a free product of groups”, J. Aust. Math. Soc., 81:2 (2006), 199–208 | MR | Zbl

[4] D. Collins, “Palindromic automorphism of free groups”, Combinatorial and Geometric Group Theory, London Mathematical Society Lecture Note Series, 204, Cambridge University Press, 1995, 63–72 | MR | Zbl

[5] F. Deloup, “Palindromes and orderings in artin groups”, J. Knot Theory Ramifications, 19:2 (2010), 145–162 | MR | Zbl

[6] F. Deloup, D. Garber, S. Kaplan, M. Teicher, “Palindromic braids”, Asian J. Math., 12:1 (2008), 65–71 | MR | Zbl

[7] J. Gilman, L. Keen, “Enumerating palindromes and primitives in rank two free groups”, J. Algebra, 332 (2011), 1–13 | MR | Zbl

[8] J. Gilman, L. Keen, “Discreteness criteria and the hyperbolic geometry of palindromes”, Conform. Geom. Dyn., 13 (2009), 76–90 | MR | Zbl

[9] J. Gilman, L. Keen, “Cutting sequences and palindromes”, Geometry of Riemann surfaces, Proceedings of the Anogia conference to celebrate the 65th birthday of William J. Harvey (Anogia, Crete, Greece, June–July 2007), London Mathematical Society Lecture Note Series, 368, Cambridge University Press, 2010, 194–216 | MR | Zbl

[10] H. Glover, C. Jensen, “Geometry for palindromic automorphisms groups of free groups”, Comment. Math. Helv., 75 (2000), 644–667 | MR | Zbl

[11] H. Helling, “A note on the automorphism group of the rank two free group”, J. Algebra, 223:2 (2000), 610–614 | MR | Zbl

[12] C. Kassel, C. Reutenauer, “A palindromization map for the free group”, Theor. Comput. Sci., 409:3 (2008), 461–470 | MR | Zbl

[13] A. Piggott, “Palindromic primitives and palindromic bases in the free group of rank two”, J. Algebra, 304:1 (2006), 359–366 | MR | Zbl

[14] V. G. Bardakov, K. Gongopadhyay, “Palindromic width of free nilpotent groups”, J. Algebra, 402 (2014), 379–391 | MR | Zbl

[15] V. G. Bardakov, K. Gongopadhyay, “On palindromic width of certain extensions and quotients of free nilpotent groups”, Int. J. Algebra Comput., 24 (2014), 553–567 | MR | Zbl

[16] V. G. Bardakov, K. Gongopadhyay, “Palindromic width of finitely generated solvable groups”, Comm. Algebra (to appear)

[17] T. R. Riley, A. W. Sale, “Palindromic width of wreath products, metabelian groups and max-n solvable groups”, Groups–Complexity–Cryptography, 6:2 (2014), 121–132 | MR | Zbl

[18] E. Fink, Palindromic width of wreath products, arXiv: 1402.4345

[19] A. H. Rhemtulla, “A problem of bounded expressibility in free groups”, Proc. Cambridge Philos. Soc., 64 (1969), 573–584 | MR

[20] Kh. S. Allambergenov, V. A. Roman'kov, “Products of commutators in groups”, Dokl. Akad. Nauk UzSSR, 4 (1984), 14–15 (Russian) | MR | Zbl

[21] Kh. S. Allambergenov, V. A. Roman'kov, On products of commutators in groups, Depon. VINITI, No 4566-85, 1985, 20 pp. (Russian) | MR

[22] Algebra and Logic, 39:4 (2000), 224–251 | MR | Zbl

[23] The Kourovka notebook, arXiv: 1401.0300

[24] J. Wu, “On combinatorial descriptions of the homotopy groups of certain spaces”, Math. Proc. Camb. Phil. Soc., 130:3 (2001), 489–513 | MR | Zbl

[25] V. G. Bardakov, R. Mikhailov, V. V. Vershinin, J. Wu, “Brunnian Braids on Surfaces”, Algebr. Geom. Topol., 12:3 (2012), 1607–1648 | MR | Zbl

[26] J. Y. Li, V. V. Vershinin, J. Wu, “Brunnian braids and Lie algebras”, J. Algebra, 439 (2015), 270–293 | MR

[27] V. G. Bardakov, V. V. Vershinin, J. Wu, “On Cohen braids”, Proc. Steklov Inst. Math., 286, 2014, 16–32 | Zbl

[28] J. S. Birman, Braids, links, and mapping class groups, Annals of Math. Studies, 82, Princeton University Press, 1975 | MR | Zbl

[29] J. A. Berrick, F. R. Cohen, Y. L. Wong, J. Wu, “Configurations, braids, and homotopy groups”, J. Amer. Math. Soc., 19:2 (2006), 265–326 | MR | Zbl

[30] R. V. Mikhailov, J. Wu, “Combinatorial group theory and the homotopy groups of finite complexes”, Geom. Topol., 17:1 (2013), 235–272 | MR | Zbl

[31] A. Gibson, N. Ito, “Finite type invariants of nanowords and nanophrases”, Topology Appl., 158:8 (2011), 1050–1072 | MR | Zbl

[32] L. A. Bokut, Y.-Q. Chen, Gröbner–Shirshov bases and Shirshov algorithm, Novosibirsk State University, Novosibirsk, 2014

[33] L. A. Bokut, Y.-Q. Chen, “Gröbner–Shirshov bases and their calculations”, Bull. of Math. Sciences, 4:3 (2014), 325–395 | MR | Zbl

[34] J. Wu, On Brunnian-type links and the link invariants given by homotopy groups of spheres, arXiv: 0909.4973

[35] J. Y. Li, J. Wu, “On symmetric commutator subgroups, braids, links and homotopy groups”, Trans. Amer. Math. Soc., 363:7 (2011), 3829–3852 | MR | Zbl

[36] T. Jørgensen, “A note on subgroups of $\mathrm{SL}(2, \mathbb{C})$”, Quart. J. Math. Oxford Ser. (2), 28:110 (1977), 209–211 | MR

[37] T. Jørgensen, “On discrete groups of Möbius transformations”, Amer. J. Math., 98 (1976), 739–749 | MR

[38] D. Tan, “On two-generator discrete groups of Möbius transformations”, Proc. Amer. Math. Soc., 106:3 (1989), 763–770 | MR | Zbl

[39] F. W. Gehring, G. J. Martin, “Iteration theory and inequalities for Kleinian groups”, Bull. Amer. Math. Soc. (N.S.), 21:1 (1989), 57–63 | MR | Zbl

[40] J. Callahan, “Jørgensen number and arithmeticity”, Conform. Geom. Dyn., 13 (2009), 160–186 | MR | Zbl

[41] A. Yu. Vesnin, A. V. Masley, “On Jørgehsen numbers and their analogs for groups of figure-eight orbifolds”, Siberian Math. J., 55:5 (2014), 807–816 | MR | Zbl

[42] F. Lei, F. Li, J. Wu, “On simplicial resolutions of framed links”, Trans. Amer. Math. Soc., 366:6 (2014), 3075–3093 | MR | Zbl

[43] S. Eilenberg, S. MacLane, “Cohomology theory in abstract groups I”, Ann. of Math., 48 (1947), 51–78 | MR | Zbl

[44] S. Eilenberg, S. MacLane, “Cohomology theory in abstract groups. II: Group extensions with a non abelian kernel”, Ann. of Math., 48 (1947), 326–341 | MR | Zbl

[45] M. D. Staic, “From 3-algebras to $\Delta$-groups and symmetric cohomology”, J. Algebra, 322:4 (2009), 1360–1378 | MR | Zbl

[46] M. D. Staic, “Symmetric cohomology of groups in low dimension”, Arch. Math., 93:3 (2009), 205–211 | MR | Zbl

[47] S.-T. Hu, “Cohomology theory in topological groups”, Michigan Math. J., 1 (1952), 11–59 | MR

[48] W. T. van Est, “Group cohomology and Lie algebra cohomology in Lie groups”, Indag. Math., 15 (1953), 484–504 | MR

[49] A. Heller, “Principal bundles and group extensions with applications to Hopf algebras”, J. Pure Appl. Algebra, 3 (1973), 219–250 | MR | Zbl

[50] M. Singh, “Symmetric continuous cohomology of topological groups”, Homology Homotopy Appl., 15:1 (2013), 279–302 | MR | Zbl

[51] M. D. Staic, Email communication to M. Singh, 2014

[52] Z. Fiedorowicz, J. L. Loday, “Crossed simplicial groups and their associated homology”, Trans. Amer. Math. Soc., 326:1 (1991), 57–87 | MR | Zbl

[53] M.-C. Kang, B. Kunyavskii, “The Bogomolov multiplier of rigid finite groups”, Arch. Math., 102:3 (2014), 209–218 | MR | Zbl