Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a40, author = {N. V. Abrosimov and L. A. Mikaiylova}, title = {Casey's theorem in hyperbolic geometry}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {354--360}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a40/} }
N. V. Abrosimov; L. A. Mikaiylova. Casey's theorem in hyperbolic geometry. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 354-360. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a40/
[1] D. V. Alekseevskii, E. B. Vinberg, A. S. Solodovnikov, Geometry, v. II, Encycl. Math. Sci., 29, Spaces of Constant Curvature, Springer, Berlin, 1993, 138 pp. | MR
[2] G. A. Baigonakova, A. D. Mednykh, “On Bretschneider's formula for a spherical quadrilateral”, Mat. Zamet. YaGU, 19:2 (2012), 3–11 | Zbl
[3] G. A. Baigonakova, A. D. Mednykh, “On Bretschneider's formula for a hyperbolic quadrilateral”, Mat. Zamet. YaGU, 19:2 (2012), 12–19 | Zbl
[4] H. S. M. Coxeter, S. L. Greitzer, Ptolemy's Theorem and its Extensions, Math. Assoc. Amer., Washington, D.C., 1967
[5] J. Casey, A sequel to the first six books of the Elements of Euclid, containing an easy introduction to modern geometry, with numerous examples, 5th. ed., Hodges, Figgis and Co., Dublin, 1888
[6] T. Kubota, “On the extended Ptolemy's theorem in hyperbolic geometry”, Science reports of the Tohoku University. Ser. 1: Physics, chemistry, astronomy, 2 (1912), 131–156
[7] M. P. Limonov, “On some aspects of a hyperbolic tangential quadrilateral”, Sib. Èlektron. Mat. Izv., 10 (2013), 454–463 | MR
[8] W. J. M'Clelland, T. Preston, A Treatise on Spherical Trigonometry with application to Spherical Geometry and Numerous Examples, v. II, Macmillian and So., London, 1886
[9] A. D. Mednykh, “Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane”, Sib. Èlektron. Mat. Izv., 9 (2012), 247–255 | MR
[10] D. Yu. Sokolova, “On trapezoid area on the Lobachevskii plane”, Sib. Èlektron. Mat. Izv., 9 (2012), 256–260 | MR
[11] J. E. Valentine, “An analogue of Ptolemy's theorem and its converse in hyperbolic geometry”, Pacific J. Math., 34:3 (1970), 817–825 | DOI | MR | Zbl
[12] L. Wimmer, “Cyclic polygons in non-Euclidean geometry”, Elem. Math., 66:2 (2011), 74–82 | DOI | MR | Zbl