Limit graphs of degree less than 24 for minimal vertex-primitive graphs of HA-type
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 130-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

A primitive permutation group is called a group of HA-type, if it contains regular abelian normal subgroup. A finite connected graph $\Gamma$ is called a minimal vertex-primitive graph of HA-type, if there exists a vertex-primitive group $G$ of automorphisms of $\Gamma$ of HA-type, such that $\Gamma$ has a minimal degree among all connected graphs $\Delta$, with $V(\Delta)=V(\Gamma)$ and $G\leq \mathrm{Aut}\,(\Delta)$. For the class of minimal vertex-primitive graphs of HA-type we find all limit graphs of degree less than 24 (it is shown that there are 23 such graphs). In the previous paper the author proved that there are infinitely many such limit graphs of degree 24.
Keywords: vertex-primitive graph, limit graph, Cayley graph, free abelian group.
@article{SEMR_2015_12_a4,
     author = {K. V. Kostousov},
     title = {Limit graphs of degree less than 24 for minimal vertex-primitive graphs of {HA-type}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {130--149},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a4/}
}
TY  - JOUR
AU  - K. V. Kostousov
TI  - Limit graphs of degree less than 24 for minimal vertex-primitive graphs of HA-type
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 130
EP  - 149
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a4/
LA  - en
ID  - SEMR_2015_12_a4
ER  - 
%0 Journal Article
%A K. V. Kostousov
%T Limit graphs of degree less than 24 for minimal vertex-primitive graphs of HA-type
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 130-149
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a4/
%G en
%F SEMR_2015_12_a4
K. V. Kostousov. Limit graphs of degree less than 24 for minimal vertex-primitive graphs of HA-type. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 130-149. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a4/

[1] Trofimov V. I., “On the action of primitive groups”, Alg. Log., 28:3 (1989), 220–238 | DOI | MR

[2] Mazurov V. D., Khukhro E. I. (eds.), Open problems in group theory, The Kourovka Notebook, Institute of Mathematics, Novosibirsk, 2002 | Zbl

[3] Giudici M., Li C. H., Praeger C. E., Seress A., Trofimov V., “On limit graphs of finite vertex-primitive graphs”, J. Comb. Theory Ser. A, 114:1 (2007), 110–134 | DOI | MR | Zbl

[4] Kostousov K. V., “The Cayley graphs of $\mathbb Z^d$ and the limits of vertex-primitive graphs of $HA$-type”, Sibirsk. Mat. Zh., 48:3 (2007), 606–620 | MR | Zbl

[5] Kostousov K. V., “Cayley graphs of the group $\mathbb Z^4$ and limits for minimal vertex-primitive graphs of $HA$-type”, Alg. Log., 47:2 (2008), 203–214 | MR | Zbl

[6] Kostousov K. V., “Cayley graphs of groups $\mathbb Z^4, \mathbb Z^5$ and $\mathbb Z^6$ which are limit graphs for the finite graphs of minimal valency for vertex-primitive groups of automorphisms”, Sib. Elektron. Mat. Izv., 5 (2008), 88–150 | MR | Zbl

[7] The GAP Group: GAP — Groups, Algorithms, and Programming, Version 4.4, , Aachen, St. Andrews, 2008 http://www.gap-system.org