Limit graphs of degree less than 24 for minimal vertex-primitive graphs of HA-type
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 130-149
Voir la notice de l'article provenant de la source Math-Net.Ru
A primitive permutation group is called a group of HA-type, if it contains regular abelian normal subgroup. A finite connected graph $\Gamma$ is called a minimal vertex-primitive graph of HA-type, if there exists a vertex-primitive group $G$ of automorphisms of $\Gamma$ of HA-type, such that $\Gamma$ has a minimal degree among all connected graphs $\Delta$, with $V(\Delta)=V(\Gamma)$ and $G\leq \mathrm{Aut}\,(\Delta)$. For the class of minimal vertex-primitive graphs of HA-type we find all limit graphs of degree less than 24 (it is shown that there are 23 such graphs). In the previous paper the author proved that there are infinitely many such limit graphs of degree 24.
Keywords:
vertex-primitive graph, limit graph, Cayley graph, free abelian group.
@article{SEMR_2015_12_a4,
author = {K. V. Kostousov},
title = {Limit graphs of degree less than 24 for minimal vertex-primitive graphs of {HA-type}},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {130--149},
publisher = {mathdoc},
volume = {12},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a4/}
}
TY - JOUR AU - K. V. Kostousov TI - Limit graphs of degree less than 24 for minimal vertex-primitive graphs of HA-type JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 130 EP - 149 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a4/ LA - en ID - SEMR_2015_12_a4 ER -
K. V. Kostousov. Limit graphs of degree less than 24 for minimal vertex-primitive graphs of HA-type. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 130-149. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a4/