Large deviation principle for integral functionals of a Markov process
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 639-650.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it was obtained the large deviation principle for the sequence of random processes $Y_n(t)=\frac{1}{n}\int\limits_0^{nt}h(X(u))du,$ where $X(u)$ is a homogeneous Markov process, $h(x)$ is a continuous function, $t \in [0,1]$. In particular, it was proved the large deviation principle for the integral of the telegraph signal process.
Keywords: Large deviations, Markov process, telegraph signal process.
@article{SEMR_2015_12_a35,
     author = {A. V. Logachov and E. I. Prokopenko},
     title = {Large deviation principle for integral functionals of a {Markov} process},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {639--650},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a35/}
}
TY  - JOUR
AU  - A. V. Logachov
AU  - E. I. Prokopenko
TI  - Large deviation principle for integral functionals of a Markov process
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 639
EP  - 650
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a35/
LA  - ru
ID  - SEMR_2015_12_a35
ER  - 
%0 Journal Article
%A A. V. Logachov
%A E. I. Prokopenko
%T Large deviation principle for integral functionals of a Markov process
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 639-650
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a35/
%G ru
%F SEMR_2015_12_a35
A. V. Logachov; E. I. Prokopenko. Large deviation principle for integral functionals of a Markov process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 639-650. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a35/

[1] M. D. Donsker, R. S. Varadhan, “Asymptotic evaluation of certain Markov process expectations for large time, I”, Communications on pure and applied mathematics, 28 (1975), 1–47 | DOI | MR | Zbl

[2] A. V. Logachov, S. Y. Makhno, “Large deviations for integrals of telegraph processes type”, Random Oper. Stoch. Eqs., 22:1 (2014), 43–52 | MR | Zbl

[3] R. Liptser, V. Spokoiny, “Moderate deviations type evaluation for integral functionals of diffusion processes”, Electron. J. Probab., 4 (1999), 1–25 | DOI | MR

[4] A. Oprisan, A. Korzeniowski, “Large Deviations via Almost Sure CLT for Functionals of Markov Processes”, Stochastic Analysis and Applications, 30 (2012), 933–947 | DOI | MR | Zbl

[5] A. Guillin, “Moderate deviations of inhomogeneous functionals of Markov processes and application to averaging”, Stochastic processes and their applications, 92:2 (2001), 287–313 | DOI | MR | Zbl

[6] M. Takeda, “A variational formula for Dirichlet forms and existence of ground states”, Journal of Functional Analysis, 266:2 (2014), 660–675 | DOI | MR | Zbl

[7] N. C. Jain, “Large deviation lower bounds for additive functionals of Markov processes”, The Annals of Probability, 18:3 (1990), 1071–1098 | DOI | MR | Zbl

[8] Yu. V. Prohorov, “Convergence of Random Processes and Limit Theorems in Probability Theory”, Theory of Probability and its Applications, 1 (1956), 157–214 | DOI | MR

[9] P. Billingsley, Convergence of Probability Measures, Nauka, M., 1977 (in Russian) | MR

[10] A. D. Wentzell, M. I. Freidlin, Fluctuations in dynamical systems caused by small random perturbations, Nauka, M., 1979 (in Russian) | MR

[11] R. S. Varadhan, Large deviations and applications, Pennsylvania, 1984 | MR

[12] A. A. Puhal'skii, “On functional principle of large deviations”, New Trends in Probability and Statistics (Bakuriani, 1990), v. 1, 198–219 | MR

[13] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, 2nd edition, Springer, New York, 1998 | MR | Zbl

[14] J. Feng, T. Kurtz, Large deviations for stochastic processes, American Mathematical Society, 2006 | MR | Zbl

[15] A. A. Borovkov, A. A. Mogul'skii, “Properties of a functional of trajectories which arises in studying the probabilities of large deviations of random walks”, Siberian mathematical journal, 52 (2011), 777–795 | MR | Zbl