Large deviation principle for integral functionals of a Markov process
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 639-650

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it was obtained the large deviation principle for the sequence of random processes $Y_n(t)=\frac{1}{n}\int\limits_0^{nt}h(X(u))du,$ where $X(u)$ is a homogeneous Markov process, $h(x)$ is a continuous function, $t \in [0,1]$. In particular, it was proved the large deviation principle for the integral of the telegraph signal process.
Keywords: Large deviations, Markov process, telegraph signal process.
@article{SEMR_2015_12_a35,
     author = {A. V. Logachov and E. I. Prokopenko},
     title = {Large deviation principle for integral functionals of a {Markov} process},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {639--650},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a35/}
}
TY  - JOUR
AU  - A. V. Logachov
AU  - E. I. Prokopenko
TI  - Large deviation principle for integral functionals of a Markov process
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 639
EP  - 650
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a35/
LA  - ru
ID  - SEMR_2015_12_a35
ER  - 
%0 Journal Article
%A A. V. Logachov
%A E. I. Prokopenko
%T Large deviation principle for integral functionals of a Markov process
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 639-650
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a35/
%G ru
%F SEMR_2015_12_a35
A. V. Logachov; E. I. Prokopenko. Large deviation principle for integral functionals of a Markov process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 639-650. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a35/