Formalization of > classification and systematics as fix-points ofpredictions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 1006-1031.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nowadays there exist many approaches to classification and clustering; for instance one can mention those based on compactness and various metrics on feature spaces, based on etalons, on distributions composition partitioning, etc. In contrast to these approaches, the task of “natural” classification is to discover a classification as a law of nature that satisfy some requirements promoted by naturalists. The sense of this law is in the compression of information by extracting the structure of natural objects. We propose a formalization of this law based on fix-points of probabilistic laws of special type. We prove that the probabilistic laws we define solve the problem of statistical ambiguity and thus they enable us to predict without contradictions and to provide consistent fix-points. These fix-points form a “natural” classification. Finally we present the results of a computer experiment on building and recognition of classes of transcription factors binding sites.
Keywords: natural classification, clustering, building of notions
Mots-clés : fix-points, formal notion, notions.
@article{SEMR_2015_12_a31,
     author = {E. E. Vityaev and V. V. Martinovich},
     title = {Formalization of <<natural>> classification and systematics as fix-points ofpredictions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1006--1031},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a31/}
}
TY  - JOUR
AU  - E. E. Vityaev
AU  - V. V. Martinovich
TI  - Formalization of <> classification and systematics as fix-points ofpredictions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 1006
EP  - 1031
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a31/
LA  - ru
ID  - SEMR_2015_12_a31
ER  - 
%0 Journal Article
%A E. E. Vityaev
%A V. V. Martinovich
%T Formalization of <> classification and systematics as fix-points ofpredictions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 1006-1031
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a31/
%G ru
%F SEMR_2015_12_a31
E. E. Vityaev; V. V. Martinovich. Formalization of <> classification and systematics as fix-points ofpredictions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 1006-1031. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a31/

[1] E. E. Vityaev, “Klassifikatsiya kak vydelenie grupp ob'ektov, udovletvoryayuschikh raznym mnozhestvam soglasovannykh zakonomernostei”, Vych. sist., 99 (1983), 44–50 | MR | Zbl

[2] E. E. Vityaev, N. S. Morozova, A. S. Sutyagin, K. A. Lapardin, “Estestvennaya klassifikatsiya i sistematika kak zakony prirody”, Vychislitelnye sistemy, 174 (2005), 80–92

[3] E. E. Vityaev, V. S. Kostin, “Estestvennaya klassifikatsiya kak zakon prirody”, Intellektualnye sistemy i metodologiya, Materialy nauchno-prakticheskogo simpoziuma “Intelektualnaya podderzhka deyatelnosti v slozhnykh predmetnykh oblastyakh”, v. 4, 1992, 107–115

[4] E. E. Vityaev, V. V. Martynovich, “Veroyatnostnye formalnye ponyatiya na kontekstakh s otritsaniyami”, Informatsionnye tekhnologii v gumanitarnykh issledovaniyakh, 19 (2014), 5–20 | Zbl

[5] V. Yu. Zabrodin, “O kriteriyakh estestvennoi klassifikatsii”, NTI, ser. 2, 8 (1981)

[6] V. L. Kozhara, “Funktsii klassifikatsii”, Teoriya klassifikatsii i analiz dannykh, v. 1, Novosibirsk, 1982

[7] S. V. Meien, S. A. Shreider, “Metodologicheskie aspekty teorii klassifikatsii”, Voprosy filosofii, 12 (1976)

[8] L. Rutkovskii, Elementarnyi uchebnik logiki, Spb., 1884

[9] E. S. Smirnov, “Konstruktsiya vida taksonomicheskoi tochki zreniya”, Zool. Zhurn., 17:3 (1938), 387–418

[10] S. A. Shreider, “Sistematika, tipologii, klassifikatsiya”, Teoriya i metodologiya biologicheskikh klassifikatsii, Nauka, M., 1983

[11] Y. Barash, G. Elidan, F. Friedman, T. Kaplan, “Modeling dependencies in protein-DNA binding sites”, RECOMB, 2003, 28–37

[12] P. V. Benos, M. L. Bulyk, G. D. Stormo, Additivity in protein-DNA interactions: how good an approximation is it?, Nucleic Acids Res., 30 (2002), 4442–4451 | DOI

[13] J. Van Ryzin (ed.), Classification and Clustering, Academic Press, Stateplace, New York, 1977 | MR

[14] B. Efron, G. Gong, “A leisurely look at the bootstrap the jackknife and resampling”, American Statistician, 37:1 (1983), 36–48 | MR

[15] J. Y. Halpern, “An analysis of first-order logic of probability”, Artificial Intelligence, 46:3 (1990), 311–350 | DOI | MR | Zbl

[16] C. G. Hempel, “Maximal Specificity and Lawlikeness in Probabilistic Explanation”, Philosophy of Science, 35 (1968), 116–133 | DOI

[17] N. A. Kolchanov, E. V. Ignatieva, E. A. Ananko, O. A. Podkolodnaya, I. L. Stepanenko, T. I. Merkulova, M. A. Pozdnyakov, N. L. Podkolodny, A. N. Naumochkin, A. G. Romashchenko, “Transcription Regulatory Regions Database (TRRD): its status in 2002”, Nucleic Acid Res., 30 (2002), 312–317 | DOI

[18] B. Kovalerchuk, E. Vityaev, Data Mining in finance: Advances in Relational and Hybrid Methods, Kluwer Academic Publishers, 2000 | Zbl

[19] V. Levitsky, E. Ignatieva, G. Vasiliev, N. Limova, T. Busygina, T. Merkulova, N. Kolchanov, “The SiteGA tool for recognition and context analysis of transcription factor binding sites: significant dinucleotide features besides the canonical consensus exemplified by SF-1 binding site”, Bioinformatics of Genome Regulation and Structure II, Springer Science+Business Media, Inc., 2006, 31–41 | DOI

[20] E. Vityaev, “The logic of prediction”, Mathematical Logic in Asia, 2006, 263–276 | DOI | MR | Zbl

[21] E. Vityaev, B. Kovalerchuk, “Empirical Theories Discovery based on the Measurement Theory”, Mind and Machine, 14:4 (2004), 551–573 | DOI

[22] E. E. Vityaev, K. A. Lapardin, I. V. Khomicheva, A. L. Proskura, “Transcription factor binding site recognition by regularity matrices based on the natural classification method”, Intelligent Data Analysis, 12 (2008), 495–512