On structure of finite nilpotent rings with some restrictions on zero-divisor graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 122-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe alternative and associative on zero nilpotent finite rings with Eulerian, regular and complete bipartite zero-divisor graphs. Moreover, in this paper, it is proved that associative on zero nilpotent finite rings with planar zero-divisor graphs are associative.
Keywords: alternative ring, associative on zero ring, nilpotent ring, finite ring, zero-divisor graph, Eulerian graph, regular graph, complete bipartite graph, planar graph.
@article{SEMR_2015_12_a3,
     author = {A. S. Kuzmina},
     title = {On structure of finite nilpotent rings with some restrictions on zero-divisor graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {122--129},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a3/}
}
TY  - JOUR
AU  - A. S. Kuzmina
TI  - On structure of finite nilpotent rings with some restrictions on zero-divisor graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 122
EP  - 129
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a3/
LA  - ru
ID  - SEMR_2015_12_a3
ER  - 
%0 Journal Article
%A A. S. Kuzmina
%T On structure of finite nilpotent rings with some restrictions on zero-divisor graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 122-129
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a3/
%G ru
%F SEMR_2015_12_a3
A. S. Kuzmina. On structure of finite nilpotent rings with some restrictions on zero-divisor graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 122-129. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a3/

[1] S. Akbari, A. Mohammadian, “Zero-divisor graphs of non-commutative rings”, J. Algebra, 296:2 (2006), 462–479 | DOI | MR | Zbl

[2] S. Akbari, A. Mohammadian, “On the zero-divisor graph of a commutative ring”, J. Algebra, 274 (2004), 847–855 | DOI | MR | Zbl

[3] S. Akbari, H. R. Maimani, S. Yassemi, “When zero-divisor graph is planar or a complete $r$-partite graph”, J. Algebra, 270:1 (2003), 169–180 | DOI | MR | Zbl

[4] D. F. Anderson, P. S. Livingston, “The Zero-Divisor Graph of a Commutative Ring”, J. Algebra, 217:2 (1999), 434–447 | DOI | MR | Zbl

[5] I. Beck, “Coloring of Commutative Rings”, J. Algebra, 116 (1988), 208–226 | DOI | MR | Zbl

[6] R. Belshoff, J. Chapman, “Planar zero-divisor graphs”, J. Algebra, 316:1 (2007), 471–480 | DOI | MR | Zbl

[7] A. S. Kuzmina, “On Nilpotent Finite Alternative Rings with Planar Zero-Divisor Graphs”, Algebra Colloq. (to appear)

[8] A. S. Kuz'mina, Yu. N. Maltsev, “Nilpotent Finite Rings with Planar Zero-Divisor Graphs”, Asian-European J. Math., 1:4 (2008), 565–574 | DOI | MR | Zbl

[9] A. S. Kuzmina, “Finite rings with Eulerian zero-divisor graphs”, J. of Algebra and Its Appl., 11:3 (2012), 551–559 | MR

[10] A. S. Kuzmina, Yu. N. Maltsev, “On Finite Rings in Which Zero-Divisor Graphs Satisfy the Dirac's condition”, International Conference “Algebra and Mathematical Logic: Theory and Applications” with a satellite summer school “Computability and Computable Structures” (Kazan, Russia, June 2–6, 2014), 91–92

[11] S. P. Redmond, “The zero-divisor graph of a noncommutative ring”, Int. J.Commut. rings, 1:4 (2002), 203–211 | MR

[12] R. Diestel, Graph theory, Novosibirsk, 2002 (in Russian)

[13] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Rings that are nearly associative, Nauka, M., 1978 (in Russian) | MR | Zbl

[14] I. M. Isaev, A. S. Kuzmina, “On Connectivity of Zero-Divisor Graphs of Algebras”, Vestnik Altai State Pedagogical Academy. Natural sciences, 7 (2011), 7–10

[15] A. S. Kuzmina, “On finite non-nilpotent rings with planar zero-divisor graphs”, Discretnaya Matematika, 4 (2009), 60–75 (in Russian) | DOI | MR | Zbl

[16] A. S. Kuzmina, Yu. N. Maltsev, “Describing ring varieties in which all finite rings have Hamiltonian zero-divisor graphs”, Algebra and Logic, 52:2 (2013), 137–146 | DOI | MR | Zbl

[17] A. S. Kuzmina, Yu. N. Maltsev, “Finite rings with some restrictions on zero-divisor graphs”, Russian Mathematics, 58:12 (2014), 41–50 | DOI | Zbl