Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a27, author = {A. L. Popovich}, title = {Representation of distributive algebraic spatial lattices by congruence lattices of semigroups and groupoids}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {818--831}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a27/} }
TY - JOUR AU - A. L. Popovich TI - Representation of distributive algebraic spatial lattices by congruence lattices of semigroups and groupoids JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2015 SP - 818 EP - 831 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a27/ LA - ru ID - SEMR_2015_12_a27 ER -
%0 Journal Article %A A. L. Popovich %T Representation of distributive algebraic spatial lattices by congruence lattices of semigroups and groupoids %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2015 %P 818-831 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a27/ %G ru %F SEMR_2015_12_a27
A. L. Popovich. Representation of distributive algebraic spatial lattices by congruence lattices of semigroups and groupoids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 818-831. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a27/
[1] C. J. Ash, “The lattice of ideals of a semigroup”, Algebra Universalis, 10 (1980), 395–398 | DOI | MR | Zbl
[2] R. Freese, W. A. Lampe, W. Taylor, “Congruence lattices of algebras of fixed similarity type, I”, Pacific J. Math., 82:1 (1979), 59–68 | DOI | MR | Zbl
[3] G. Grätzer, Lattice Theory: Foundation, Birkhäuser Verlag, Basel, 2011 | MR | Zbl
[4] G. Grätzer, Universal Algebra, Second edition with updates, Springer science+Business Media, LLC, 2008 | MR | Zbl
[5] G. Grätzer, E. T. Schmidt, “Characterizations of congruence lattices of abstract algebras”, Acta Sci. Math. (Szeged), 24 (1963), 34–59 | MR
[6] R. Egrot, R. Hirsh, “Completely representable lattices”, Algebra Univers, 67:3 (2012), 205–217 | DOI | MR | Zbl
[7] J. Johnson, R. L. Seifer, A survey of multi-unary algebras, Mimeographed seminar notes, U.C. Berkeley, 1967, 26 pp.
[8] B. Jonsson, Topics in Universal Algebra, Lecture Notes in Mathematics, 250, Springer-Verlag, 1972 | DOI | MR | Zbl
[9] W. A. Lampe, “Congruence lattices of algebras of fixed similarity type, II”, Pacific J. Math., 103:2 (1982), 475–508 | DOI | MR | Zbl
[10] W. A. Lampe, “Results and problems on congruence lattice representations”, Algebra univers., 55 (2006), 127–135 | DOI | MR | Zbl
[11] V. Repnitskiǐ, J. Tůma, “Intervals in subgroup lattices of countable locally finite groups”, Algebra univers., 59 (2008), 49–71 | DOI | MR | Zbl
[12] P. Ružička, J. Tůma, F. Wehrung, “Distributive congruence lattices of congruence-permutable algebras”, Journal of Algebra, 311:1 (2007), 96–116 | DOI | MR | Zbl
[13] E. T. Schmidt, “The ideal lattice of a distributive lattice with $0$ is the congruence lattice of a lattice”, Acta Sci. Math. (Szeged), 43 (1981), 153–168 | MR | Zbl
[14] J. Tůma, “Semilattice-valued measures”, Contr. Gen. Alg., 18 (2007)
[15] P. Zhu, “On Rees congruence semigroups”, Northeast. Math. J., 8 (1992), 185–191 | MR | Zbl