Representation of distributive algebraic spatial lattices by congruence lattices of semigroups and groupoids
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 818-831 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that every distributive algebraic spatial lattice is isomorphic to the congruence lattice of some semigroup and also of some groupoid with zero satisfying identities $x^2=0$ and $xy=yx$.
Keywords: congruence lattice, semigroup, spatial lattice.
Mots-clés : groupoid
@article{SEMR_2015_12_a27,
     author = {A. L. Popovich},
     title = {Representation of distributive algebraic spatial lattices by congruence lattices of semigroups and groupoids},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {818--831},
     year = {2015},
     volume = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a27/}
}
TY  - JOUR
AU  - A. L. Popovich
TI  - Representation of distributive algebraic spatial lattices by congruence lattices of semigroups and groupoids
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 818
EP  - 831
VL  - 12
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a27/
LA  - ru
ID  - SEMR_2015_12_a27
ER  - 
%0 Journal Article
%A A. L. Popovich
%T Representation of distributive algebraic spatial lattices by congruence lattices of semigroups and groupoids
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 818-831
%V 12
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a27/
%G ru
%F SEMR_2015_12_a27
A. L. Popovich. Representation of distributive algebraic spatial lattices by congruence lattices of semigroups and groupoids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 818-831. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a27/

[1] C. J. Ash, “The lattice of ideals of a semigroup”, Algebra Universalis, 10 (1980), 395–398 | DOI | MR | Zbl

[2] R. Freese, W. A. Lampe, W. Taylor, “Congruence lattices of algebras of fixed similarity type, I”, Pacific J. Math., 82:1 (1979), 59–68 | DOI | MR | Zbl

[3] G. Grätzer, Lattice Theory: Foundation, Birkhäuser Verlag, Basel, 2011 | MR | Zbl

[4] G. Grätzer, Universal Algebra, Second edition with updates, Springer science+Business Media, LLC, 2008 | MR | Zbl

[5] G. Grätzer, E. T. Schmidt, “Characterizations of congruence lattices of abstract algebras”, Acta Sci. Math. (Szeged), 24 (1963), 34–59 | MR

[6] R. Egrot, R. Hirsh, “Completely representable lattices”, Algebra Univers, 67:3 (2012), 205–217 | DOI | MR | Zbl

[7] J. Johnson, R. L. Seifer, A survey of multi-unary algebras, Mimeographed seminar notes, U.C. Berkeley, 1967, 26 pp.

[8] B. Jonsson, Topics in Universal Algebra, Lecture Notes in Mathematics, 250, Springer-Verlag, 1972 | DOI | MR | Zbl

[9] W. A. Lampe, “Congruence lattices of algebras of fixed similarity type, II”, Pacific J. Math., 103:2 (1982), 475–508 | DOI | MR | Zbl

[10] W. A. Lampe, “Results and problems on congruence lattice representations”, Algebra univers., 55 (2006), 127–135 | DOI | MR | Zbl

[11] V. Repnitskiǐ, J. Tůma, “Intervals in subgroup lattices of countable locally finite groups”, Algebra univers., 59 (2008), 49–71 | DOI | MR | Zbl

[12] P. Ružička, J. Tůma, F. Wehrung, “Distributive congruence lattices of congruence-permutable algebras”, Journal of Algebra, 311:1 (2007), 96–116 | DOI | MR | Zbl

[13] E. T. Schmidt, “The ideal lattice of a distributive lattice with $0$ is the congruence lattice of a lattice”, Acta Sci. Math. (Szeged), 43 (1981), 153–168 | MR | Zbl

[14] J. Tůma, “Semilattice-valued measures”, Contr. Gen. Alg., 18 (2007)

[15] P. Zhu, “On Rees congruence semigroups”, Northeast. Math. J., 8 (1992), 185–191 | MR | Zbl