Representation of distributive algebraic spatial lattices by congruence lattices of semigroups and groupoids
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 818-831.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every distributive algebraic spatial lattice is isomorphic to the congruence lattice of some semigroup and also of some groupoid with zero satisfying identities $x^2=0$ and $xy=yx$.
Keywords: congruence lattice, semigroup, spatial lattice.
Mots-clés : groupoid
@article{SEMR_2015_12_a27,
     author = {A. L. Popovich},
     title = {Representation of distributive algebraic spatial lattices by congruence lattices of semigroups and groupoids},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {818--831},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a27/}
}
TY  - JOUR
AU  - A. L. Popovich
TI  - Representation of distributive algebraic spatial lattices by congruence lattices of semigroups and groupoids
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 818
EP  - 831
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a27/
LA  - ru
ID  - SEMR_2015_12_a27
ER  - 
%0 Journal Article
%A A. L. Popovich
%T Representation of distributive algebraic spatial lattices by congruence lattices of semigroups and groupoids
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 818-831
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a27/
%G ru
%F SEMR_2015_12_a27
A. L. Popovich. Representation of distributive algebraic spatial lattices by congruence lattices of semigroups and groupoids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 818-831. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a27/

[1] C. J. Ash, “The lattice of ideals of a semigroup”, Algebra Universalis, 10 (1980), 395–398 | DOI | MR | Zbl

[2] R. Freese, W. A. Lampe, W. Taylor, “Congruence lattices of algebras of fixed similarity type, I”, Pacific J. Math., 82:1 (1979), 59–68 | DOI | MR | Zbl

[3] G. Grätzer, Lattice Theory: Foundation, Birkhäuser Verlag, Basel, 2011 | MR | Zbl

[4] G. Grätzer, Universal Algebra, Second edition with updates, Springer science+Business Media, LLC, 2008 | MR | Zbl

[5] G. Grätzer, E. T. Schmidt, “Characterizations of congruence lattices of abstract algebras”, Acta Sci. Math. (Szeged), 24 (1963), 34–59 | MR

[6] R. Egrot, R. Hirsh, “Completely representable lattices”, Algebra Univers, 67:3 (2012), 205–217 | DOI | MR | Zbl

[7] J. Johnson, R. L. Seifer, A survey of multi-unary algebras, Mimeographed seminar notes, U.C. Berkeley, 1967, 26 pp.

[8] B. Jonsson, Topics in Universal Algebra, Lecture Notes in Mathematics, 250, Springer-Verlag, 1972 | DOI | MR | Zbl

[9] W. A. Lampe, “Congruence lattices of algebras of fixed similarity type, II”, Pacific J. Math., 103:2 (1982), 475–508 | DOI | MR | Zbl

[10] W. A. Lampe, “Results and problems on congruence lattice representations”, Algebra univers., 55 (2006), 127–135 | DOI | MR | Zbl

[11] V. Repnitskiǐ, J. Tůma, “Intervals in subgroup lattices of countable locally finite groups”, Algebra univers., 59 (2008), 49–71 | DOI | MR | Zbl

[12] P. Ružička, J. Tůma, F. Wehrung, “Distributive congruence lattices of congruence-permutable algebras”, Journal of Algebra, 311:1 (2007), 96–116 | DOI | MR | Zbl

[13] E. T. Schmidt, “The ideal lattice of a distributive lattice with $0$ is the congruence lattice of a lattice”, Acta Sci. Math. (Szeged), 43 (1981), 153–168 | MR | Zbl

[14] J. Tůma, “Semilattice-valued measures”, Contr. Gen. Alg., 18 (2007)

[15] P. Zhu, “On Rees congruence semigroups”, Northeast. Math. J., 8 (1992), 185–191 | MR | Zbl