Automorphisms of a distance-regular graph with intersection array $\{100,66,1;1,33,100\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 795-801.

Voir la notice de l'article provenant de la source Math-Net.Ru

A. A. Makhnev and D. V. Paduchikh have found intersection arrays of distance-regular graphs, in which neighborhoods of vertices are strongly-regular graphs with second eigenvalue $3$. A. A. Makhnev suggested the program to research of automorphisms of these distance-regular graphs. In this paper it is obtained possible orders and subgraphs of fixed points of automorphisms of a hypothetical distance-regular graph with intersection array $\{100,66,1;1,33,100\}$. In particular, this graph does not vertex symmetric.
Keywords: distance-regular graph, vertex symmetric graph.
@article{SEMR_2015_12_a24,
     author = {K. S. Efimov and A. A. Makhnev},
     title = {Automorphisms of a distance-regular graph with intersection array $\{100,66,1;1,33,100\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {795--801},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a24/}
}
TY  - JOUR
AU  - K. S. Efimov
AU  - A. A. Makhnev
TI  - Automorphisms of a distance-regular graph with intersection array $\{100,66,1;1,33,100\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 795
EP  - 801
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a24/
LA  - en
ID  - SEMR_2015_12_a24
ER  - 
%0 Journal Article
%A K. S. Efimov
%A A. A. Makhnev
%T Automorphisms of a distance-regular graph with intersection array $\{100,66,1;1,33,100\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 795-801
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a24/
%G en
%F SEMR_2015_12_a24
K. S. Efimov; A. A. Makhnev. Automorphisms of a distance-regular graph with intersection array $\{100,66,1;1,33,100\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 795-801. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a24/

[1] A. A. Makhnev, D. V. Paduchikh, “Distance-regular graphs, in which neighbourhoods of vertices are strongly regular with the second eigenvalue at most 3”, Doklady Mathematics, 92:2 (2015), 568–571 | DOI

[2] M. S. Nirova, “Edge-symmetric strongly-regular graphs with number of vertices is not greater 100”, Siberian Electr. Math. Reports, 10 (2013), 22–30 | MR | Zbl

[3] P. J. Cameron, Permutation Groups, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[4] A. L. Gavrilyuk, A. A. Makhnev, “On automorphisms of a distance-regular graph with intersetion array $\{56,45,1;1,9,56\}$”, Doklady Akademii Nauk, 432:5 (2010), 512–515 | MR

[5] C. D. Godsil, A. D. Henzel, “Distance-regular covers of the complete graphs”, J. Comb. Theory (B), 56:2 (1992), 205–238 | DOI | MR | Zbl

[6] A. S. Kondratiev, “Quasirecognition by the set of element orders of the groups $E_6(q)$ i $^2E_6(q)$”, Sib. Math. J., 48 (2007), 1001–1018 | DOI | MR

[7] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian Electronic Mathematical Reports, 6 (2009), 1–12 | MR | Zbl