Admissible slides for generalized Baumslag--Solitar groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 552-561

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalized Baumslag-Solitar group ($GBS$ group) is a finitely generated group $G$ which acts on a tree with all edge and vertex stabilizers infinite cyclic. Any $GBS$ group is isomorphic to fundamental group $\pi_1(\mathbb{A})$ of some labeled graph $\mathbb{A}$. Slide is a transformation of labeled graphs. Slides play an important role in isomorphism problem for GBS groups. Given an edge $e$ with label $\lambda$ and $\alpha\in\mathbb{Q}$. In this paper we describe an algorithm that checks if there exists a cycle $p$ such that after slide $e$ over $p$ label $\lambda$ multiplies by $\alpha$ or not. If such cycle exists then the algorithm finds one of them.
Keywords: isomorphism problem, generalized Baumslag–Solitar group, labeled graph.
@article{SEMR_2015_12_a19,
     author = {F. A. Dudkin},
     title = {Admissible slides for generalized {Baumslag--Solitar} groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {552--561},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a19/}
}
TY  - JOUR
AU  - F. A. Dudkin
TI  - Admissible slides for generalized Baumslag--Solitar groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 552
EP  - 561
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a19/
LA  - en
ID  - SEMR_2015_12_a19
ER  - 
%0 Journal Article
%A F. A. Dudkin
%T Admissible slides for generalized Baumslag--Solitar groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 552-561
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a19/
%G en
%F SEMR_2015_12_a19
F. A. Dudkin. Admissible slides for generalized Baumslag--Solitar groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 552-561. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a19/