Admissible slides for generalized Baumslag--Solitar groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 552-561.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalized Baumslag-Solitar group ($GBS$ group) is a finitely generated group $G$ which acts on a tree with all edge and vertex stabilizers infinite cyclic. Any $GBS$ group is isomorphic to fundamental group $\pi_1(\mathbb{A})$ of some labeled graph $\mathbb{A}$. Slide is a transformation of labeled graphs. Slides play an important role in isomorphism problem for GBS groups. Given an edge $e$ with label $\lambda$ and $\alpha\in\mathbb{Q}$. In this paper we describe an algorithm that checks if there exists a cycle $p$ such that after slide $e$ over $p$ label $\lambda$ multiplies by $\alpha$ or not. If such cycle exists then the algorithm finds one of them.
Keywords: isomorphism problem, generalized Baumslag–Solitar group, labeled graph.
@article{SEMR_2015_12_a19,
     author = {F. A. Dudkin},
     title = {Admissible slides for generalized {Baumslag--Solitar} groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {552--561},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a19/}
}
TY  - JOUR
AU  - F. A. Dudkin
TI  - Admissible slides for generalized Baumslag--Solitar groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 552
EP  - 561
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a19/
LA  - en
ID  - SEMR_2015_12_a19
ER  - 
%0 Journal Article
%A F. A. Dudkin
%T Admissible slides for generalized Baumslag--Solitar groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 552-561
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a19/
%G en
%F SEMR_2015_12_a19
F. A. Dudkin. Admissible slides for generalized Baumslag--Solitar groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 552-561. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a19/

[1] J. P. Serre, Trees, Springer, Berlin–Heidelberg–New York, 1980 | MR | Zbl

[2] M. Forester, “Splittings of generalized Baumslag–Solitar groups”, Geometriae Dedicata, 121 (2006), 43–59 | DOI | MR | Zbl

[3] M. Clay, “Deformation spaces of G-trees and automorphisms of Baumslag–Solitar groups”, Groups Geom. Dyn., 3:1 (2009), 39–69 | DOI | MR | Zbl

[4] M. Forester, “On uniquenes of JSJ decomposition of finitely generated groups”, Comm. Math. Helv., 78 (2003), 740–751 | DOI | MR | Zbl

[5] M. Clay, M. Forester, “On the isomorphism problem for generalized Baumslag–Solitar groups”, Algebraic Geometric Topology, 8:4 (2008), 2289–2322 | DOI | MR | Zbl

[6] G. Levitt, “On the automorphism group of generalized Baumslag–Solitar groups”, Geometry Topology, 11 (2007), 473–515 | DOI | MR | Zbl

[7] M. Forester, “Deformation and rigidity of simplicial group actions on trees”, Geometry Topology, 6 (2002), 219–267 | DOI | MR | Zbl

[8] M. Clay, M. Forester, “Whitehead moves for $G$-trees”, Bull. London Math. Soc., 41:2 (2009), 205–212 | DOI | MR | Zbl