Complexity functions of some Leibniz--Poisson algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 500-507.

Voir la notice de l'article provenant de la source Math-Net.Ru

Leibniz–Poisson algebras are generalizations of Poisson algebras. Let $\{c_n(\mathbf{V})\}_{n\geq 0}$ and $\{\gamma_n(\mathbf{V})\}_{n\geq 2}$ are respectively sequences of codimensions and proper codimensions of varieties of Leibniz-Poisson algebras $\mathbf{V}$. We study the exponential generating functions $\mathcal{C}(\mathbf{V},z)=\sum_{n=0}^{\infty}c_n(\mathbf{V})z^n/n!$ and $\mathcal{C}^{p}(\mathbf{V},z)=\sum_{n=2}^{\infty}\gamma_n(\mathbf{V})z^n/n!$. The functions $\mathcal{C}(\mathbf{V},z)$ are used in the study of Lie algebras and associative algebras. In this paper we study numerical characteristics of varieties of Leibniz–Poisson algebras $\mathbf{V}_s$ defined by the identities $$ \{ x_1, x_2 \} \cdot \{x_3, x_4 \} =0, ~\{x_0,\{x_1,x_2\},\ldots ,\{x_{2s-1},x_{2s}\}\}=0 $$ and of varieties of Leibniz–Poisson algebras $\mathbf{W}_s$ defined by the identities $$ \{ x_1, x_2 \} \cdot \{x_3, x_4 \} =0, ~\{\{x_1,x_2\},\ldots ,\{x_{2s+1},x_{2s+2}\}\}=0, ~s\geq 1. $$ For each of the variety $\mathbf{V}_s$ and $\mathbf{W}_s$ an algebra-carrier is found and a basis of $n$-th proper polylinear space is built. We found exact formulas for the exponential generating functions for the codimension sequences and for the proper codimension sequences and exact formulas for codimension and proper codimension. Also a series of varieties of Leibniz–Poisson algebras, which codimension sequences asymptotically grow as polynomials of degree $k$, $k \geq 2 $, is given.
Mots-clés : Poisson algebra, Leibniz–Poisson algebra
Keywords: variety of algebras, growth of variety.
@article{SEMR_2015_12_a18,
     author = {S. M. Ratseev and O. I. Cherevatenko},
     title = {Complexity functions of some {Leibniz--Poisson} algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {500--507},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a18/}
}
TY  - JOUR
AU  - S. M. Ratseev
AU  - O. I. Cherevatenko
TI  - Complexity functions of some Leibniz--Poisson algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 500
EP  - 507
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a18/
LA  - ru
ID  - SEMR_2015_12_a18
ER  - 
%0 Journal Article
%A S. M. Ratseev
%A O. I. Cherevatenko
%T Complexity functions of some Leibniz--Poisson algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 500-507
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a18/
%G ru
%F SEMR_2015_12_a18
S. M. Ratseev; O. I. Cherevatenko. Complexity functions of some Leibniz--Poisson algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 500-507. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a18/

[1] S. M. Ratseev, “Commutative Leibniz–Poisson algebras of polynomial growth”, Vestnik of Samara State University. Natural Science Series, 94:3/1 (2012), 54–65 (in Russian) | MR

[2] Russian Acad. Sci. Sb. Math., 188:6 (1997), 913–931 | DOI | MR

[3] S. M. Ratseev, O. I. Cherevatenko, “On metabelian varieties of Leibniz–Poisson algebras”, Bulletin of Irkutsk State University. Series "Mathematics", 6:1 (2013), 72–77 (in Russian) | Zbl

[4] S. M. Ratseev, “Equivalent conditions of polynomial growth of a variety of Poisson algebras”, Moscow University Mathematics Bulletin, 67 (2012), 195–199 | DOI | MR | Zbl

[5] S. M. Ratseev, “On minimal Leibniz algebras with nilpotent commutator subalgebra”, Algebra and Analysis, 27:1 (2015), 178–193 (in Russian)

[6] S. M. Ratseev, “On varieties of Leibniz–Poisson algebras with the identity $\{x, y\}\cdot \{z, t\}=0$”, J. Sib. Fed. Univ. Math. Phys., 6:1 (2013), 97–104

[7] A. Giambruno, D. La Mattina, V. M. Petrogradsky, “Matrix algebras of polynomial codimention growth”, Israel J. Math., 158 (2007), 367–378 | DOI | MR | Zbl