Polymodal logic of the class of inductive linear time frames
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 421-431.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of frames based on a class of $LTK$-frames is considered. The polymodal decidable calculus in modal language with three modalities is found which is complete with respect to the class of inductive nearly $LTK$-frames. It is proved that it is finite approximated by the class of finite inductive nearly $LTK$-frames.
Mots-clés : polymodal logic
Keywords: Kripke frames, axiomatization, completeness, finite model property.
@article{SEMR_2015_12_a17,
     author = {V. F. Yun},
     title = {Polymodal logic of the class of inductive linear time frames},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {421--431},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a17/}
}
TY  - JOUR
AU  - V. F. Yun
TI  - Polymodal logic of the class of inductive linear time frames
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 421
EP  - 431
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a17/
LA  - ru
ID  - SEMR_2015_12_a17
ER  - 
%0 Journal Article
%A V. F. Yun
%T Polymodal logic of the class of inductive linear time frames
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 421-431
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a17/
%G ru
%F SEMR_2015_12_a17
V. F. Yun. Polymodal logic of the class of inductive linear time frames. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 421-431. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a17/

[1] J. Y. Halpern, R. Van der Meyden, M. Y. Vardi, “Complete Axiomatizations for Reasoning about Knowledge and Time”, SIAM J. on Comp., 33 (2004), 674–703 | MR | Zbl

[2] V. Rybakov, “Discrete linear temporal logic with current time point clasters, deciding algorithms”, Logic and Logic Philosophy, 17:1–2 (2008) | MR | Zbl

[3] E. Calardo, V. V. Rybakov, “An axiomatization for the multi-modal logic of knowledge and time LTK”, Logic J. IGPL, 15:3 (2007), 239–254 | MR | Zbl

[4] Lukyanchuk A., “Decidability of multi-modal logic $LTK$ of linear time and knowledge”, J. Sib. Federal Univ. Math. Phys., 6:2 (2013), 220–226 | MR

[5] V. F. Yun, “Vremennaya logika lineinykh po vremeni freimov s aksiomoi induktsii”, Sib. elektron. matem. izv., 6 (2009), 312–325 | MR | Zbl

[6] A. Chagrov, M. Zakharyaschev, Modal logics, Oxford Logic Guides, 35, Clarendon Press, Oxford, 1997 | MR

[7] D. Vakarelov, Modal logics for Knowledge Representation Systems, Preprint No 7, Sofia Univ., 1988 | MR | Zbl

[8] D. Vakarelov, “Inductive Modal Logics”, Fundamenta Informaticae, 16 (1992), 383–405 | MR | Zbl