On Sylow numbers of some finite groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 309-317

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group, let $\pi (G)$ be the set of primes $p$ such that $G$ contains an element of order $p$, and let $n_{p}(G)$ be the number of Sylow $p$-subgroups of $G$, that is, $n_{p}(G)=|\mathrm{Syl}_{p}(G)|$. Set $\mathrm{NS} (G):=\{n_{p}(G)|~p\in \pi (G)\}$. In this paper, we will show that if $ |G|=|S| $ and $\mathrm{NS}(G)=\mathrm{NS}(S)$, where $S$ is one of the groups: the special projective linear groups $L_{3}(q)$, with $5\nmid (q-1)$, the projective special unitary groups $U_{3}(q)$, the sporadic simple groups, the alternating simple groups, and the symmetric groups of degree prime $r$, then $G$ is isomorphic to $S$. Furthermore, we will show that if $G$ is a finite centerless group and $\mathrm{NS}(G)=\mathrm{NS}(L_{2}(17))$, then $G$ is isomorphic to $L_{2}(17)$, and or $G$ is isomorphic to $\mathrm{Aut}(L_{2}(17)$.
Keywords: finite group, Sylow subgroup.
Mots-clés : simple group
@article{SEMR_2015_12_a12,
     author = {A. K. Asboei and A. K. Khalil and R. Mohammadyari},
     title = {On {Sylow} numbers of some finite groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {309--317},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a12/}
}
TY  - JOUR
AU  - A. K. Asboei
AU  - A. K. Khalil
AU  - R. Mohammadyari
TI  - On Sylow numbers of some finite groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 309
EP  - 317
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a12/
LA  - en
ID  - SEMR_2015_12_a12
ER  - 
%0 Journal Article
%A A. K. Asboei
%A A. K. Khalil
%A R. Mohammadyari
%T On Sylow numbers of some finite groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 309-317
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a12/
%G en
%F SEMR_2015_12_a12
A. K. Asboei; A. K. Khalil; R. Mohammadyari. On Sylow numbers of some finite groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 309-317. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a12/