On Sylow numbers of some finite groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 309-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group, let $\pi (G)$ be the set of primes $p$ such that $G$ contains an element of order $p$, and let $n_{p}(G)$ be the number of Sylow $p$-subgroups of $G$, that is, $n_{p}(G)=|\mathrm{Syl}_{p}(G)|$. Set $\mathrm{NS} (G):=\{n_{p}(G)|~p\in \pi (G)\}$. In this paper, we will show that if $ |G|=|S| $ and $\mathrm{NS}(G)=\mathrm{NS}(S)$, where $S$ is one of the groups: the special projective linear groups $L_{3}(q)$, with $5\nmid (q-1)$, the projective special unitary groups $U_{3}(q)$, the sporadic simple groups, the alternating simple groups, and the symmetric groups of degree prime $r$, then $G$ is isomorphic to $S$. Furthermore, we will show that if $G$ is a finite centerless group and $\mathrm{NS}(G)=\mathrm{NS}(L_{2}(17))$, then $G$ is isomorphic to $L_{2}(17)$, and or $G$ is isomorphic to $\mathrm{Aut}(L_{2}(17)$.
Keywords: finite group, Sylow subgroup.
Mots-clés : simple group
@article{SEMR_2015_12_a12,
     author = {A. K. Asboei and A. K. Khalil and R. Mohammadyari},
     title = {On {Sylow} numbers of some finite groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {309--317},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a12/}
}
TY  - JOUR
AU  - A. K. Asboei
AU  - A. K. Khalil
AU  - R. Mohammadyari
TI  - On Sylow numbers of some finite groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 309
EP  - 317
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a12/
LA  - en
ID  - SEMR_2015_12_a12
ER  - 
%0 Journal Article
%A A. K. Asboei
%A A. K. Khalil
%A R. Mohammadyari
%T On Sylow numbers of some finite groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 309-317
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a12/
%G en
%F SEMR_2015_12_a12
A. K. Asboei; A. K. Khalil; R. Mohammadyari. On Sylow numbers of some finite groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 309-317. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a12/

[1] A. Iranmanesh, N. Ahanjideh, “A characterization of $^{2}D_{n}(p^{k})$ by order of normalizer of Sylow subgroups”, International journal of Algebra, 2:8 (2008), 853–865 | MR | Zbl

[2] A. Khosravi, B. Khosaravi, “Two new characterization of sporadic simple groups”, PU. M. A, 16:3 (2005), 287–293 | MR | Zbl

[3] A. K. Asboei, “A new characterization of the linear groups $L_{2}(q)$ by the Sylow numbers”, Bol. Soc. Paran. Mat., 32:1 (2014), 277–282 | DOI

[4] A. K. Asboei, “A New Characterization of Alternating groups $A_{5}$ and $A_{6}$”, New Zealand J. Math., 42 (2012), 149–155 | MR | Zbl

[5] A. K. Asboei, “A new characterization of $L_{2}(r)$ by their Sylow numbers”, Acta Math. Sin. (Engl. Ser.) (to appear)

[6] A. K. Asboei, S. S. Amiri, A. Iranmanesh, A. Tehranian, “A characterization of Symmetric group $S_{r}$, where $r$ is prime number”, Annales Mathematicae et Informaticae, 40 (2012), 13–23 | MR | Zbl

[7] C. Hering, W. M. Kantor, G. M. Seitz, “Finite groups with a spilit BN-pair of rank 1”, J. Algebra, 20 (1972), 435–475 | DOI | MR | Zbl

[8] H. H. Mitchell, “Determination of the ordinary and modular ternary linear groups”, Trans. Amer. Math. Soc., 12:2 (1911), 207–242 | DOI | MR | Zbl

[9] J. Bi, “A characterization of $L_{n}(q)$ by the normalizers' orders of their Sylow subgroups”, Acta Math. Sin. (Engl. Ser.), 11:3 (1995), 300–306 | DOI | MR | Zbl

[10] J. Bi, “A characterization of $L_{2}(q)$”, J. Liaoning Univ. (Natural Sciences Edition), 19:2 (1992), 1–4 (Chinese)

[11] J. Bi, “A characterization of finite projective special unitary group $U_{6}(q)$”, J. Liaoning Univ. (Natural Sciences Edition), 26:4 (1990), 295–298 (Chinese)

[12] J. Bi, “Characterization of Alternating groups by orders of normalizers of Sylow subgroups”, Algebra Colloq., 8:3 (2001), 249–256 | MR | Zbl

[13] J. Bi, “On the group with the same orders of Sylow normalizers as the finite simple group $S_{4}(q)$”, Algebra, Groups and Geom., 18:3 (2001), 349–355 | MR | Zbl

[14] J. Bi, “On the groups with the same orders of Sylow normalizers as the finite projective special unitary group”, Sci. China, Ser. A, 47:6 (2004), 801–811 | DOI | MR | Zbl

[15] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Wilson, Atlas of finite groups, Clarendon, Oxford, 1985 | Zbl

[16] J. Zhang, “Sylow numbers of finite groups”, J. Algebra, 176:10 (1995), 111–123 | DOI | MR | Zbl

[17] L. Weisner, “On the Sylow Subgroups of the Symmetric and Alternating Groups”, American Journal of Mathematics, 47:2 (1925), 121–124 | DOI | MR | Zbl

[18] M. Hall, The Theory of Groups, Macmillan, New York, 1959 | MR | Zbl

[19] M. Herzog, “On finite simple groups of order divisible by three primes only”, J. Algebra, 120:10 (1968), 383–388 | DOI | MR

[20] R. W. Carter, “Conjugacy classes in the Weyl group”, Composito Math., 25 (1972), 1–59 | MR | Zbl

[21] R. W. Carter, Simple Groups of Lie Type, John Wiley and Sons, London, 1972 | MR | Zbl

[22] R. W. Hartley, “Determination of the ternary collineation groups whose coefficients lie in the $GF(2^{n})$”, Ann. of Math., 27 (1925), 140–158 | DOI | MR | Zbl