Distributions of countable models of theories with continuum many types
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 267-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present distributions of countable models and corresponding structural characteristics of complete theories with continuum many types: for prime models over finite sets relative to Rudin–Keisler preorders, for limit models over types and over sequences of types, and for other countable models of theory.
Keywords: countable model, theory with continuum many types, Rudin–-Keisler preorder, prime model, limit model, premodel set.
@article{SEMR_2015_12_a11,
     author = {R. A. Popkov and S. V. Sudoplatov},
     title = {Distributions of countable models of theories with continuum many types},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {267--291},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a11/}
}
TY  - JOUR
AU  - R. A. Popkov
AU  - S. V. Sudoplatov
TI  - Distributions of countable models of theories with continuum many types
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 267
EP  - 291
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a11/
LA  - en
ID  - SEMR_2015_12_a11
ER  - 
%0 Journal Article
%A R. A. Popkov
%A S. V. Sudoplatov
%T Distributions of countable models of theories with continuum many types
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 267-291
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a11/
%G en
%F SEMR_2015_12_a11
R. A. Popkov; S. V. Sudoplatov. Distributions of countable models of theories with continuum many types. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 267-291. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a11/

[1] B. S. Baizhanov, S. V. Sudoplatov, V. V. Verbovskiy, “Conditions for non-symmetric relations of semi-isolation”, Siberian Electronic Mathematical Reports, 9 (2012), 161–184 | MR

[2] J. T. Baldwin, A. H. Lachlan, “On strongly minimal sets”, J. Symbolic Logic, 36 (1971), 79–96 | DOI | MR | Zbl

[3] J. T. Baldwin, A. R. Blass, A. M. W. Glass, D. W. Kueker, “A “natural” theory without a prime model”, Algebra Universalis, 3 (1973), 152–155 | DOI | MR | Zbl

[4] J. T. Baldwin, J. M. Plotkin, “A topology for the space of countable models of a first order theory”, Zeitshrift Math. Logik. and Grundlagen der Math., 20 (1974), 173–178 | DOI | MR | Zbl

[5] J. T. Baldwin, Fundamentals of stability theory, Springer-Verlag, Berlin, 1988 | MR | Zbl

[6] C. C. Chang, H. J. Keisler, Model Theory, Elsevier, Amsterdam, 1990 | MR

[7] Yu. L. Ershov, S. S. Goncharov, Constructive Models, Plenum Publ. Corp., New York, 2000 | MR

[8] Yu. L. Ershov, E. A. Palyutin, Mathematical logic, Fizmatlit, M., 2011 (in Russian)

[9] B. Hart, E. Hrushovski, M. S. Laskowski, “The uncountable spectra of countable theories”, Ann. Math., 152 (2000), 207–257 | DOI | MR | Zbl

[10] J. Barwise (ed.), Handbook of mathematical logic, v. 1, Model Theory, Nauka, M., 1982 (in Russian) | Zbl

[11] E. Hrushovski, “Finitely based theories”, J. Symbolic Logic, 54 (1989), 221–225 | DOI | MR | Zbl

[12] K. Ikeda, A. Pillay, A. Tsuboi, “On theories having three countable models”, Math. Logic Quarterly, 44 (1998), 161–166 | DOI | MR | Zbl

[13] B. Kim, “On the number of countable models of a countable supersimple theory”, J. London Math. Soc., 60 (1999), 641–645 | DOI | MR | Zbl

[14] A. H. Lachlan, “On the number of countable models of a countable superstable theory”, Proc. Int. Cong. Logic, Methodology and Philosophy of Science, North-Holland, Amsterdam, 1973, 45–56 | MR

[15] S. Lempp, T. Slaman, “The complexity of the index sets of $\aleph_0$-categorical theories and of Ehrenfeucht theories”, Advances in logic, Contemporary Mathematics, 425, Amer. Math. Soc., Providence, 2007, 43–47 | DOI | MR | Zbl

[16] T. Millar, “Pure Recursive Model Theory”, Handbook of Computability Theory, ed. E. R. Griffor, Elsevier Science B. V., 1999, 507–532 | DOI | MR | Zbl

[17] M. Morley, “The number of countable models”, J. Symbolic Logic, 35 (1970), 14–18 | DOI | MR | Zbl

[18] L. Newelski, “Vaught's conjecture for some meager groups”, Israel J. Math., 112 (1999), 271–300 | DOI | MR

[19] A. Pillay, “Countable models of stable theories”, Proc. Amer. Math. Soc., 89 (1983), 666–672 | DOI | MR | Zbl

[20] R. A. Popkov, “Classification of countable models for complete theories of unary predicates with a substitution of a bounded order”, Collection of papers, Algebra and Model Theory, 8, eds. A. G. Pinus, K. N. Ponomaryov, S. V. Sudoplatov, E. I. Timoshenko, NSTU, Novosibirsk, 2011, 73–82 | Zbl

[21] S. Shelah, Classification Theory and the Number of Non-Isomorphic Models, North-Holland, Amsterdam, 1990 | MR | Zbl

[22] S. V. Sudoplatov, “Complete theories with finitely many countable models, I”, Algebra and Logic, 43 (2004), 62–69 | DOI | MR | Zbl

[23] S. V. Sudoplatov, “Complete theories with finitely many countable models, II”, Algebra and Logic, 45 (2006), 180–200 | DOI | MR | Zbl

[24] S. V. Sudoplatov, “On the number of countable models of complete theories with finite Rudin–Keisler preorders”, Siberian Math. J., 48 (2007), 334–338 | DOI | MR | Zbl

[25] S. V. Sudoplatov, “Hypergraphs of prime models and distributions of countable models of small theories”, J. Math. Sciences, 169 (2010), 680–695 | DOI | MR | Zbl

[26] S. V. Sudoplatov, “On Rudin–Keisler preorders in small theories”, Collection of papers, Algebra and Model Theory, 8, eds. A. G. Pinus, K. N. Ponomaryov, S. V. Sudoplatov, E. I. Timoshenko, NSTU, Novosibirsk, 2011, 94–102 | Zbl

[27] P. Tanović, “Theories with constants and three countable models”, Archive for Math. Logic, 46 (2007), 517–527 | DOI | MR | Zbl

[28] R. Vaught, “Denumerable models of complete theories”, Infinistic Methods, Pergamon, London, 1961, 303–321 | MR

[29] R. E. Woodrow, “Theories with a finite number of countable models”, J. Symbolic Logic, 43 (1978), 442–455 | DOI | MR | Zbl