On indiscernibility of a set in circularly ordered structures
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 255-266.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a criterion for indiscernibility of the set of realisations of an 1-type of convexity rank 1 in $\aleph_0$-categorical non-1-transitive weakly circularly minimal structures.
Keywords: weak circular minimality, $\aleph_0$-categoricity, indiscernibility.
@article{SEMR_2015_12_a10,
     author = {B. Sh. Kulpeshov},
     title = {On indiscernibility of a set in circularly ordered structures},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {255--266},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a10/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
TI  - On indiscernibility of a set in circularly ordered structures
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 255
EP  - 266
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a10/
LA  - ru
ID  - SEMR_2015_12_a10
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%T On indiscernibility of a set in circularly ordered structures
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 255-266
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a10/
%G ru
%F SEMR_2015_12_a10
B. Sh. Kulpeshov. On indiscernibility of a set in circularly ordered structures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 255-266. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a10/

[1] M. Bhattacharjee, H. D. Macpherson, R. G. Möller, P. M. Neumann, Notes on Infinite Permutation Groups, Lecture Notes in Mathematics, 1698, Springer, 1998 | MR | Zbl

[2] B. Sh. Kulpeshov, H. D. Macpherson, “Minimality conditions on circularly ordered structures”, Mathematical Logic Quarterly, 51 (2005), 377–399 | DOI | MR | Zbl

[3] H. D. Macpherson, Ch. Steinhorn, “On variants of $o$-minimality”, Annals of Pure and Applied Logic, 79 (1996), 165–209 | DOI | MR | Zbl

[4] D. Livingstone, A. Wagner, “Transitivity of finite permutation groups on unordered sets”, Mathematische Zeitschrift, 90 (1965), 393–403 | DOI | MR | Zbl

[5] P. J. Cameron, “Transitivity of permutation groups on unordered sets”, Mathematische Zeitschrift, 148 (1976), 127–139 | DOI | MR | Zbl

[6] M. Droste, M. Giraudet, H. D. Macpherson, N. Sauer, “Set-homogeneous graphs”, Journal of Combinatorial Theory, series B, 62 (1994), 63–95 | DOI | MR | Zbl

[7] P. J. Cameron, “Orbits of permutation groups on unordered sets, II”, Journal of the London Mathematical Society, 23 (1981), 249–264 | DOI | MR | Zbl

[8] P. J. Cameron, “Orbits of permutation groups on unordered sets. IV: Homogeneity and transitivity”, Journal of the London Mathematical Society, 27 (1983), 238–247 | DOI | MR | Zbl

[9] A. H. Lachlan, “Countable homogeneous tournaments”, Transactions of American Mathematical Society, 284 (1984), 431–461 | DOI | MR | Zbl

[10] B. S. Baizhanov, B. Sh. Kulpeshov, “On behaviour of 2-formulas in weakly $o$-minimal theories”, Mathematical Logic in Asia, Proceedings of the 9th Asian Logic Conference, World Scientific, Singapore, 2006, 31–40 | DOI | MR | Zbl

[11] A. B. Altayeva, B. Sh. Kulpeshov, “Equivalence-generating formulas in weakly circularly minimal structures”, Reports of the National Academy of sciences of the Republic of Kazakhstan, 2 (2014), 5–10

[12] B. Sh. Kulpeshov, “Binarity for $\aleph_0$-categorical weakly $o$-minimal theories of convexity rank 1”, Siberian Electronic Mathematical Reports, 3 (2006), 185–196 | MR | Zbl