On indiscernibility of a set in circularly ordered structures
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 255-266
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a criterion for indiscernibility of the set of realisations of an 1-type of convexity rank 1 in $\aleph_0$-categorical non-1-transitive weakly circularly minimal structures.
Keywords:
weak circular minimality, $\aleph_0$-categoricity, indiscernibility.
@article{SEMR_2015_12_a10,
author = {B. Sh. Kulpeshov},
title = {On indiscernibility of a set in circularly ordered structures},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {255--266},
publisher = {mathdoc},
volume = {12},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a10/}
}
B. Sh. Kulpeshov. On indiscernibility of a set in circularly ordered structures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 255-266. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a10/