On indiscernibility of a set in circularly ordered structures
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 255-266

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a criterion for indiscernibility of the set of realisations of an 1-type of convexity rank 1 in $\aleph_0$-categorical non-1-transitive weakly circularly minimal structures.
Keywords: weak circular minimality, $\aleph_0$-categoricity, indiscernibility.
@article{SEMR_2015_12_a10,
     author = {B. Sh. Kulpeshov},
     title = {On indiscernibility of a set in circularly ordered structures},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {255--266},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a10/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
TI  - On indiscernibility of a set in circularly ordered structures
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 255
EP  - 266
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a10/
LA  - ru
ID  - SEMR_2015_12_a10
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%T On indiscernibility of a set in circularly ordered structures
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 255-266
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a10/
%G ru
%F SEMR_2015_12_a10
B. Sh. Kulpeshov. On indiscernibility of a set in circularly ordered structures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 255-266. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a10/